Many of our efforts are dedicated to understanding the biology and exploring the therapeutic potential of stem cells. Stem cells are immature cells that exist in various locations of our bodies. Throughout our lifetimes, these cells divide and develop into the specialized cells that perform the functions necessary for organismal development and adult tissue function. Furthermore, if we contract a disease that kills those specialized cells, our stem cells are a potential source for replacing lost cells to counteract or even cure the disorder. However, there are several challenges that must be overcome in this field. In particular, efforts to engineer tissues rely upon the ability to control stem cells. That is, the signals that control stem cell function and fate must first be discovered, and then integrated into cellular microenvironments to control stem cell expansion and lineage-specific differentiation. We have efforts in novel signal discovery, computational and experimental analysis of the biological networks that cells use to interpret and implement these signals, and on the integration of these signals into biomaterial microenvironments for optimal stem cell control.
Scalable expansion and differentiation of pluripotent stem cells can greatly benefit many biological applications, including cell replacement therapy, disease modeling, in vitro organogenesis and drug screening, which typically require a large numbers of readily available cells. To this end, we are interested in engineering novel three-dimensional biomaterial platforms to facilitate large-scale compatible expansion and central nervous system (CNS) directed differentiation of pluripotent stem cells. Concurrently, our efforts shed new light on potential mechanistic effects of biomaterial properties on stem cell fate.
This blend of stem cell biology, systems biology analysis, and biomaterials engineering has led to significant advances in the application of stem cells for a variety of applications including tissue repair.