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Abstract

Human pluripotent stem cells (hPSCs)—including embryonic stem cells (hESCs) and induced pluripotent
stem cells (hiPSCs)—are very promising candidates for cell therapies, tissue engineering, high throughput
pharmacology screens, and toxicity testing. These applications require large numbers of high quality cells;
however, scalable production of human pluripotent stem cells and their derivatives at a high density and
under well-defined conditions has been a challenge. We recently reported a simple, efficient, fully defined,
scalable, and good manufacturing practice (GMP) compatible 3D culture system based on a thermoreversible
hydrogel for hPSC expansion and differentiation. Here, we describe additional design rationale and
characterization of this system. For instance, we have determined that culturing hPSCs as a suspension in a
liquid medium can exhibit lower volumetric yields due to cell agglomeration and possible shear force-
induced cell loss. By contrast, using hydrogels as 3D scaffolds for culturing hPSCs reduces aggregation and
may insulate from shear forces. Additionally, hydrogel-based 3D culture systems can support efficient hPSC
expansion and differentiation at a high density if compatible with hPSC biology. Finally, there are
considerable opportunities for future development to further enhance hydrogel-based 3D culture systems for
producing hPSCs and their progeny.
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Abstract—Human pluripotent stem cells (hPSCs)-—including
embryonic stem cells (hESCs) and induced pluripotent stem
cells (hiPSCs)—are very promising candidates for cell ther-
apies, tissue engineering, high throughput pharmacology
screens, and toxicity testing, These applications require large
numbers of high quality cells: however, scalable production
of human pluripotent stem cells and their derivatives at a
high density and under well-defined conditions has been a
challenge. We recently reported a simple, efficient, fully
defined, scalable, and good manufacturing practice (GMP)
compatible 3D culture system based on a thermoreversible
hydrogel for hPSC expansion and differentiation. Here, we
describe additional design rationale and characterization of
this system. For instance, we have determined that culturing
hPSCs as a suspension in a liquid medium can exhibit lower
volumetric yields due to cell agglomeration and possible
shear force-induced cell loss. By contrast, using hydrogels as
3D scaffolds for culturing hPSCs reduces aggregation and
may insulate from shear forces. Additionally, hydrogel-based
3D culture systems can support efficient hPSC expansion and
differentiation at a high density if compatible with hPSC
biology. Finally, there are considerable opportunities for
future development to further enhance hydrogel-based 3D
culture systems for producing hPSCs and their progeny.

Keywords—Human embryonic stem cells, Induced pluripotent

stem cells, 3D culture system, Thermoreversible hydrogel.

INTRODUCTION

Human plurpotent stem cells (hPSCs), including
human embryonic stem cells (hESCs)” and induced
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human pluripotent stem cells (hiPSCs),** are being
investigated for a broad range of biomedical applications
because of their unique characteristics. Not only can they
undergo effective long-term expansion in vitro to yield
large quantities of cells, but they can also be differentiated
into presumably all cell types in the adult body.* Thus,
they are promising candidates in cell replacement thera-
pies for various human degenerative diseases or inju-
ries,"™* for generating engineered tissues or organs,” and
for drug discovery and toxicity testing.”*”

All of these applications require a large number of
cells.>”**2% In particular, the patient populations with
degenerative diseases/injuries or organ failure are
large, with for example ~ 8 million patients with
myocardial infarction (MI), ~1-2.5 million with type |
diabetes, and ~1 million with Parkinson’s discase (PD)
in the US alone.*”” In addition, to treat an individual
with MI, type I diabetes, or PD, approximately 10”
surviving cardiomyocytes, 10° g cells, or 10° dopami-
nergic (DA) neurons are required, respectively.”” Fur-
thermore, due to the low survival of transplanted cells
in vivoe (e.g. ~6% DA neurons or 1% cardiomyocytes
have survived several months after transplantation in
rodents'*"%), even more cells will be necessary in
reality. In addition, tissue engineering endeavors
would require ~10° hepatocytes or cardiomyocytes to
create an engineered human liver or heart, respec-
tively.” Finally, for drug discovery, ~10" cells are
necessa ? to screen a library with a million com-
pounds,” and there are many large chemical, peptide,
and nucleotide libraries that can be screened against
many types of cells derived from hPSCs.*' In sum-
mary, a substantial number of hPSCs are necessary for
current and future research and development.

Current strategies for producing hPSCs or their
derivatives at a large scale generally involve three
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steps.” First, a working cell bank containing many
hPSC aliquots is established and cryopreserved. Sec-
ond. an aliquot is grown into the desired number of
cells through a series of expansions. Finally, these cells
are then differentiated into the targeted cell types. An
efficient and scalable bioprocess is required for both
the expansion and differentiation.”” In addition, if the
cells are being produced for clinical application, the
bioprocess must comply with good manufacturing
practices (GMP).*® Currently, the most widely used
systems involve the expansion and differentiation of
hPSCs on 2D surfaces. Though significant advances
have resulted in increasingly well-defined 2D culture
systems (including a range of media and substrates),
the production of cells on a large scale remains a
challange.”** For instance, at a typical density of
~5000 DA neurons/cm® or ~50,000 cardiomyocytes/
em’, ~0.5 km® or 16 km® of cell culture surfaces are
necessary to contain sufficient numbers of DA neurons
or cardiomyocytes to treat PD or MI populations in
the US, not to mention the surface area required to
expand the parent hPSCs.

Thus, it may be desirable, and even unavoidable, to
move from 2D to 3D for the large-scale hPSC produc-
tion.'”*” A number of 3D suspension culture systems
have been investigated for hPSC culture during the past
decade. Single or small clumps of hPSCs have been sus-
pended and cultured as cell aggregates in liquid medium
under continuous stirring or shaking."***** Alterna-
tively, hPSCs have been first seeded onto polymeric
microspheres coated with matrix proteins and then cul-
tured asa microcarrier suspension in a liquid medium,***
While these 3D systems have achieved some degrees of
success, many challenges have also been reported.'” In
particular, considerable cell agglomeration, which can
lead to cell death or uncontrolled differentiation, is fre-
quently observed in suspension cultures.*'”** Apoptosis
induced by shear forces resulting from the medium flow is
also common.' #3242 A 4 result of such constraints,
suspension systems often use low initial seeding densities
and result in relatively low cell expansion and volumetric
cell yields.'™** Encapsulating and culturing small clumps
of hPSCs in a number of hydrogels have also been stud-
ied. >3 However, limited cell growth has been
achieved to date, and uncontrolled differentiation can
occur in such 3D culture syslcms.”'” In short, cost-
cffective production of hPSCs or their derivatives on a
large scale and under well-defined conditions is very
challenging.

An efficient 3D culture system for large-scale hPSC
production should exhibit a number of features. First,
it should support a high density hPSC culture at a high

http://link.springer.com/article/10.1007%2Fs12195-014-0333-z#page-1

FIGURE 1. 3D static suspension culture. Single iPS-Fib2sp
were cultured for 4 days in static liquid culture with mTeSR
or E8 medium and Rl (present for the full 4 days) at low,
medium, or high seeding density (2.5 x 10°, 1.0 x 10°% or
2.5 x 10° cells/mL, respectively). (a and b) Cell morphologies
on day 1, 2, 3, and 4 are shown with phase contrast images.
(c, d and e) Mean diameter of the hPSC aggregates, fold
expansion and cell densities at different days within the
4 days culture period. ***indicates statistical significance at a
level of p<0.001. Scale bar: 250 gm,

desirable for large-scale hPSC production. Likewise,
the cell growth rate should be close or equal to the
highest rate achieved on 2D surfaces. Second, the
system should be well-defined such that production is
reproducible and compatible with GMP. Third, the
system should be simple. scalable, and easy to auto-
mate. Finally, it would be desirable to support single
cell seeding to “synchronize™ the environmental con-
ditions that cells experience. While research has shown
that cell dissociation promotes hPSC apoptosis,™ sin-
gle cell seeding offers the potential for more uniform
and reproducible expansion and differentiation.™'¥%!

We recently developed and reported a simple, well-
defined, efficient, scalable 3D culture system, utilizing a
thermoreversible hydrogel as a biomaterial scaffold, for
both hPSC expansion and differentiation at high den-
sity."” In this paper, we describe additional character-
ization of the system as well as general design rationale
for 3D systems that enable hPSC culture at a high den-
sity. Briefly, we found that under a typical set of condi-
tions, we were unable to culture hPSCs as a suspension
in a liquid medium with high volumetric yields. Sub-
stantial cell agglomeration was observed in these sus-
pension cultures. The use of hydrogels as 3D scaffolds
for hPSC culture was able to mitigate cell aggregation,
and such scaffolds may also isolate cells from shear
forces that accompany cell culture agitation and can lead
to cytotoxicity." #3242 Einally, the ability to adapt
this system to also support cell differentiation—such as
into neural lineages—is a useful feature, and future work
may further enhance the ability of the system to promote
economical cell expansion as well as differentiation into
additional lineages.

MATERIALS AND METHODS
Reagents

hESC lines HI and H9 were obtained from WiCell
Research Institute. iPS-MSC™ (derived from human
mesenchymal stem cells) and iPS-Fib2>® (derived from
human dermal fibroblasts) were a kind gift from
George Q. Daley at C(hildrcn‘s Hospital Boston.
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cell growth rate, Culturing nP>SCUs at a high daensity can Essential 8 medium (ES).” 0.5 mM EDITA, Accutase,
significantly reduce the space, labor, and material ProLong™ Antifade reagents, LIVE/DEAD™ Cell
necessary for cell expansion, and is thus highly Viability staining kit, Click-iT” EdU Alexa Fluor™ 594
.A QLDW[%NHIIWM'
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