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Abstract

Mammalian gene expression patterns, and their variability across populations of cells, are regulated by factors specific to
each gene in concert with its surrounding cellular and genomic environment. Lentiviruses such as HIV integrate their
genomes into semi-random genomic locations in the cells they infect, and the resulting viral gene expression provides a
natural system to dissect the contributions of genomic environment to transcriptional regulation. Previously, we showed
that expression heterogeneity and its modulation by specific host factors at HIV integration sites are key determinants of
infected-cell fate and a possible source of latent infections. Here, we assess the integration context dependence of
expression heterogeneity from diverse single integrations of a HIV-promoter/GFP-reporter cassette in Jurkat T-cells.
Systematically fitting a stochastic model of gene expression to our data reveals an underlying transcriptional dynamic, by
which multiple transcripts are produced during short, infrequent bursts, that quantitatively accounts for the wide, highly
skewed protein expression distributions observed in each of our clonal cell populations. Interestingly, we find that the size
of transcriptional bursts is the primary systematic covariate over integration sites, varying from a few to tens of transcripts
across integration sites, and correlating well with mean expression. In contrast, burst frequencies are scattered about a
typical value of several per cell-division time and demonstrate little correlation with the clonal means. This pattern of
modulation generates consistently noisy distributions over the sampled integration positions, with large expression
variability relative to the mean maintained even for the most productive integrations, and could contribute to specifying
heterogeneous, integration-site-dependent viral production patterns in HIV-infected cells. Genomic environment thus
emerges as a significant control parameter for gene expression variation that may contribute to structuring mammalian
genomes, as well as be exploited for survival by integrating viruses.
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Introduction

The life cycle dynamics of HIV-1 within a host are shaped by

numerous apparently stochastic processes, from the statistics of

immune cell infection in humans, to mutation during reverse

transcription, semi-random integration of the proviral DNA into

the host-cell chromosome, and stochastic viral gene expression

thereafter [1–7]. We and others have experimentally shown that

expression from the HIV-1 promoter is indeed stochastic and

shaped by host factors at the viral integration site [4,8,9,10], and

we have argued as well that the resultant expression heterogene-

ities are important in the genesis of viral latency [4], a ubiquitous

feature of infection that currently confounds our ability to cure

HIV in patients [7,11,12,13]. Gaining a deeper understanding of

the factors that influence cell-cell variability in viral gene

expression may thus shed light on how to ameliorate the effects

of latency, and more generally on the processes that affect the

expression of any gene.

The semi-random integration of HIV-1 into the host genome

provides a particularly ideal opportunity to dissect the relative

contribution of genomic environment as a fundamental element of

expression regulation that may contribute importantly to expres-

sion dynamics and heterogeneities in eukaryotes. It is now well

established that HIV-1 integration is biased towards actively

transcribed chromosomal locations [3,14], and it has been

demonstrated that mean expression levels from model HIV-1

viruses correlate with specific epigenetic features at their

integrations [9] and of their surrounding genomic regions [3].

Prior studies in other systems focused on how the population

average expression of genetic constructs depends on integration

context, and have found correlations with the expression levels of

surrounding genes and with the local 3-D chromatin structure

[15], as well as with DNA methylation, nucleolar association, and

DNA diffusional mobility [16]. Importantly, these studies inform

us about the features of genomic environment that might affect

mean expression levels. However, the effects of genomic
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environment, or integration site, on stochastic expression and

heterogeneity have not yet been explored.

The discrete and stochastic nature of gene expression has been

appreciated for some time [17,18,19], and it has become

increasingly recognized that the resulting expression variability

may significantly impact diverse biological functions, shaping the

outcomes of cellular decisions, being exploited as a tool for survival

in changing environments, and often inducing qualitatively

different behaviors than would be predicted from a deterministic

understanding [20–26]. Theoretical and computational analyses

have explored the relative contributions of key processes to

heterogeneity in gene expression, including open-complex forma-

tion, transcriptional elongation, translation, post-transcriptional

and translational processing/modification, as well as chromatin

regulation [27–32]. Importantly for this study, the latter, an

integral element of epigenetic control over gene expression, yields

potentially slow and probabilistic dynamics that have been

postulated as a significant source of expression heterogeneity in

eukaryotes. In parallel with these theoretical studies, experimental

approaches have been developed to characterize expression noise

arising both ‘intrinsically’ from the biochemical processes directly

involved in the expression of any individual gene, as well as

‘extrinsically’ from variability in other cellular processes that more

homogeneously affect the expression dynamics of groups of genes

simultaneously, such as cell cycle or concentration fluctuations of

upstream transcription factors [33–37]. Interestingly, genome-

scale measurements of expression heterogeneity demonstrate

correlations with gene functional class, implying that perhaps

noise is a ‘‘selected’’ feature of a gene’s expression pattern [38–43].

Despite the apparent complexity of cellular transcriptional

regulation, for many genes across a broad range of cell types, the

patterns of cell-to-cell expression variability within isogenic

populations are remarkably well described by simple stochastic

models that represent the gene – including the associated genomic

environment, chromatin structure, transcriptional regulators, and

transcriptional machinery – as existing in a small number of

discrete configurations, or states, with expression heterogeneities

depending on probabilistic transitions between states and on

probabilistic transcript and protein production and degradation

[27,44]. These models are often necessarily abstract, yet they

parsimoniously capture many essential features of transcriptional

biology. Model fits to clonal single-cell experimental data,

primarily in Saccharomyces cerevisiae for eukaryotic studies, has

allowed the inference of underlying gene-state and transcriptional

dynamics that largely account for observed expression heteroge-

neities in a number of instances [39,45–49].

A wide range of transcriptional dynamics have been revealed by

such analyses, from continuous [38,48], to ‘pulsatile’ [45,47], to

‘bursty’ [46,48]. These diverse dynamics are effectively charac-

terized by the frequency of gene-activation events, their duration,

and the number of transcripts produced during each event

[29,30,48,50], and contrasting results have emerged concerning

the relative contributions of cellular regulation of each of these

quantities to specifying the expression pattern of any given gene.

For example, several pioneering studies, of single, targeted

integrations of inducible, synthetic constructs, in yeast have

suggested that the concentration of inducer largely controls the

frequency of gene-activation events rather than the number of

transcripts produced by each event [45,47]. A subsequent study in

yeast – which considered three targeted integrations of similar

constructs into 1) adjacent locations on a single chromosome, 2)

homologous locations on sister chromosomes, or 3) non-homolo-

gous chromosomal locations – similarly found that transcriptional

activation frequency varied between locations [36]. Genome-scale

studies of stochastic gene expression in yeast suggest as well that

the primary feature of transcriptional dynamics that varies

between genes, over a wide range of genes, is the frequency of

transcriptional activation events [38,39]. In contrast, an elegant

study in mammalian cells quantified expression heterogeneities –

from a single, random integration of a Tet-inducible construct into

one locus in the genome – by using fluorescent in-situ

hybridization (FISH) to directly visualize single transcripts [46].

The authors concluded that transcripts are produced in bursts, and

that the typical number of transcripts produced during a burst

(referred to as the ‘transcriptional burst size’), rather than the

frequency of bursting, was the primary measure that varied with

tetracycline induction level.

While the above studies have begun to characterize the

dependence of gene-expression dynamics on a number of cellular

inputs, a systematic, quantitative investigation of the contribution

of genomic environment over a broad range of genomic

integration positions remains to be conducted. Furthermore, the

contrasting observations as to whether transcriptional activation

frequency, transcriptional burst size, or some other feature of

transcriptional dynamics represents the primary variable that cells

modulate to control expression patterns in these diverse systems

raise key questions of how important features of genetic,

epigenetic, and regulatory architecture may differ in yeast and

mammalian cells.

Here we explore the fundamental relationship between genomic

environment and expression heterogeneity from a diverse set of

semi-random single integrations of a model HIV-1-promoter/

GFP-reporter construct in cultured Jurkat T-cells. Systematically

and rigorously fitting a model of stochastic gene expression allows

us to infer the underlying expression dynamics that account for the

single-gene expression distributions that we measure from single-

integration clonal populations. Our analysis reveals that transcript

production in bursts accounts for the wide, highly skewed,

expression profiles that we observe, and importantly that

Author Summary

Cellular gene expression is a fundamentally stochastic
process due to the intrinsic randomness of the underlying
biochemical reactions involved. The resulting stochastically
generated expression heterogeneities have important
biological consequences and also encode information
about the underlying dynamics that generate them. A
fundamental goal of transcriptional biology is to under-
stand the quantitative regulation of gene-expression
dynamics, which in eukaryotes depends on factors specific
to each gene in concert with its surrounding cellular and
genomic environment. We investigated the regulatory
effects of variable genomic environments by quantitatively
measuring expression heterogeneity from diverse single
genomic integrations of the HIV promoter in cultured cells.
Systematically fitting a model of stochastic gene expres-
sion to our measurements reveals transcript production in
bursts as the underlying dynamic that accounts for the
large heterogeneities observed within single-integration
clonal cell populations, with the size of transcriptional
bursts as the primary feature that varies over genomic
integrations. Our findings implicate genomic environment
as an important quantitative control parameter that
eukaryotic cells might use to shape gene-expression
patterns, and that lentviruses such as HIV, whose genomes
are semi-randomly integrated into the genomes of the
host cells they infect, may exploit to sample diverse and
heterogeneous expression patterns that evade treatment.

HIV Promoter Integration Controls Expression Noise
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transcriptional burst size is the primary feature that varies across

viral integrations. These results interestingly suggest that the virus

samples a particularly ‘noisy’ range of possible expression profiles

across cellular integrations, and open a number of important

questions for further study. We propose several qualitative models

that may explain this inferred variation of transcriptional dynamics

with genomic environment and discuss the implications of our

findings for HIV dynamics, and for cellular gene expression in

general.

Results

HIV-1 LTR distributions are wide and highly skewed
Although HIV-1 requires transactivation by the virally-encoded

protein Tat to amplify its expression [51], the HIV-1 promoter still

supports basal transcription in the absence of Tat [9], which

occurs initially after viral infection but before significant viral

protein is produced. The dynamics of this basal expression, and

the associated expression heterogeneities that result, may play an

important role in affecting the cellular ‘decision’ between lytic viral

production and latency [4]. To study heterogeneities in basal

expression from the HIV promoter, we infected Jurkat T-cells, at a

low multiplicity of infection (MOI), with a model HIV-1 virus that

contains the full-length LTR driving expression of a GFP reporter

but no viral genes. Cells with single integrations were isolated by

fluorescence activated cell sorting (FACS) and expanded into

clonal populations. The resulting clonal GFP expression profiles

were quantified by flow cytometry and smoothed for comparison

to model distributions in the analysis that follows. Thirty-one such

clones, with average florescence levels ranging over an order of

magnitude, and expression profiles clearly distinguishable from a

measured autofluorescence profile, were selected for analysis

(Fig. 1A). Integrations whose mean fluorescence was less than

twice the autofluorescence mean were not included in our analysis.

The shape features of our experimental distributions (such as

mean, variance, skewness, etc.) are diagnostic of the underlying

expression dynamics that generate them – and of the regulatory

role of various molecular ‘inputs’ such as integration position (as

well as promoter structure and concentrations of transcription

factors, which were the ‘inputs’ considered in several other elegant

studies: [38,45,46,47]). For example, a simple model assuming

transcript number fluctuations as the primary source of expression

heterogeneity, with only the rate of constant transcript production

varying with a given ‘input’, predicts a Poisson-like distribution

shape variation whereby distribution variances (s2 considered as a

measure of distribution width and expression heterogeneity) vary

proportionately to the mean (s2!m, for mean m). Such a variation,

illustrated by the lower dashed line in Fig. 1B (‘Poisson’), has been

observed over a large set of yeast promoters under multiple

experimental conditions [38,39]. Alternatively, a model in which

distribution shape variations are effectively described by a simple

scaling of single-cell fluorescent values by an ‘input-controlled’

constant value (ra fð Þ~r1 f =að Þ=a, where ra fð Þ is the probability

of observing fluorescence f , for a normalized value of the ‘input-

controlled’ parameter a) would predict distribution variances to

vary in proportion to the mean squared (s2!m2, Fig. 1B upper

dashed line, ‘Scaling’). Such a shape variation might arise if

heterogeneities are instead due primarily to probabilistic transi-

tions between promoter configurations that specify different

transcription rates, with only these transcription rates varying

(proportionately) with the ‘input’ from one clonal distribution to

the next. In contrast to these possibilities, we find that the trend in

distribution-shape variation over our set of clonal populations is

best described by a relationship where the distribution variance

changes proportionately to the mean raised to the 1.760.2 power

(Fig. 1B, solid regression). This characteristic trend differs

significantly from either of the above simple models (P,0.025),

suggesting that neither is sufficient, and that integration-site

variation may specify a more complex modulation of promoter

and transcriptional dynamics in our system.

To visualize additional features of the expression distributions

over the set of clones, we translated each to a common mean

fluorescence, and correspondingly scaled its fluorescence values

about that mean based on the variance regression in Fig. 1B,

revealing a ‘typical’ distribution shape that is wide and highly

skewed (Fig. 1C). These features are signatures of a bursty

underlying transcriptional dynamic [27,50], as we discuss in

further depth below.

A two-state gene model of transcriptional bursting
qualitatively captures characteristic HIV-LTR distribution
shapes and variation over viral integrations

A simple stochastic model that captures a number of essential

features of transcriptional biology, and that can reproduce a range

of single-gene expression profiles, assumes that the promoter may

exist in either an activated state (wa) that produces mRNA

probabilistically at a fixed rate (kt
+), or repressed state (wr) that is

unproductive (Fig. 2A). These model states may represent different

characteristic configurations of chromatin and/or transcriptional

complexes, with transitions between them occurring at rates ka

and kr. Together with the active-state transcription rate, these

lumped parameters represent contributions from diverse modes of

genetic and epigenetic transcriptional regulation that may depend

essentially on features of the genomic environment at the viral

integration sites. Variants of this model have been used in other

studies as well to analyze single-gene expression data [45–49] and

have also been studied theoretically [27,52,53,54].

In the analysis that follows, we always consider steady-state

model distributions, since longitudinal measurements over the

course of a week on several clones indicate that distribution shapes

are relatively stable over our time scale of interest (see Fig. S3 and

Text S1 Sec. S.VII for further discussion). Furthermore, we

determine all rate constants relative to the transcript degradation

rate (k{
t , estimated to be approximately 0.2 h21, see Text S1 Sec.

S.V), as their relative rather than absolute values determine

expression profiles at steady state. In addition, we adopt the

working hypothesis that our experimental distribution shapes are

determined by the intrinsic processes represented in our model at

fixed values of its rates – possible contributions of extrinsic sources

of variability have been considered in earlier work on this system

[4] and are discussed further in the Supporting Information (Text

S1, Sec. S.VIII).

The qualitative expression regimes of the two-state gene model

fundamentally depend on the relative values of the gene-state

transition rate constants (Fig. 2B), with different dynamics

corresponding to different potential underlying transcriptional

regulatory mechanisms. ‘Fast’ gene-state dynamics (ka,krwwkt
{,

perhaps specified by fast binding and unbinding of transcription

factors) approximate continuous transcription from a single fixed

gene state and can generate relatively narrow Poisson-like

expression profiles, which widen for ‘Intermediate’ dynamics

(ka,kr~kt
{). ‘Slow’ gene-state dynamics (ka,krvvkt

{, due

perhaps to slower changes in chromatin configuration) may

generate multiple transcripts after each transition to a relatively

stable active state, and the dynamics can be described as ‘pulsatile’

[45,47]. Distributions become bimodal in the extreme case.

Another dynamic regime that has received considerable

attention can be termed the transcriptional ‘bursting’ regime, in

HIV Promoter Integration Controls Expression Noise
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which the gene inactivation rate is fast (krwwkt
{), and the

transcription rate is sufficiently large (b~kt
z=kr not small) that

transcriptional bursts of average size b are produced during short

excursions of frequency ka to a relatively unstable active gene-state

(see Text S1, Sec. S.V for further discussion, and Refs.

[29,30,48,50,55]). Distributions in the ‘bursting’ regime are wide

and highly skewed, in qualitative agreement with the ‘typical’

HIV-LTR distributions from our measurements (compare Fig. 1C

and 2B, solid curves), with both the protein and transcript

distribution means and variances approximately demonstrating a

relatively simple dependence on transcriptional burst size and

frequency: m!kab; s2!kab bz1ð Þ (see Text S1, Secs. S.III –

S.V). Indeed, by assuming a model solution in the ‘bursting’

regime, one can analytically calculate a unique transcriptional

burst size and burst frequency that reproduce the mean and

variance of each of our experimental distributions, with good

qualitative agreement in distribution shape (see Text S1, Secs. S.III

and S.VI for further discussion). Furthermore, variation in

transcriptional burst size and frequency, individually or in

combination, can account for the range of distribution-shape

variation discussed in Fig. 1B, with the best agreement to our

experimental observations occurring if burst size and burst

frequency typically vary simultaneously, but with the dominant

effect coming from burst-size variation (Fig. 2C).

Though the relatively slow time scale of protein degradation in

our system (k{
p ~k{

t =4) effectively ‘filters’ some of the dynamic

information propagated from model transcript to protein distri-

butions, we emphasize that the calculated protein distribution

shapes still reflect the underlying transcript distribution shapes and

demonstrate distinctive features in each expression regime

(Fig. 2B). Below, through careful analysis, we will make use of

this observation, building on the qualitative analysis developed

here, to quantitatively infer the underlying heterogeneity-generat-

ing gene-state and transcriptional dynamics within our system

from measured protein expression distributions, and to determine

quantitative bounds on our ability to distinguish between different

dynamic regimes. Of considerable benefit for this analysis,

cytometry-based protein measurements can be acquired rapidly

(e.g. compared to microscopy-based transcript-counting measure-

ments), allowing good resolution of the probability distributions

that underlie the expression histograms collected over populations

of cells, and enabling measurements on sufficient numbers of

Figure 1. HIV LTR expression distributions are wide and highly skewed. A) Experimental system: Sample clonal histograms, spanning a
range of ‘dim’ and ‘bright’ integrations, with autofluorescence included for comparison, represent fluorescence measurements on approximately
4000 cells. Smooth curves through each are the result of an optimized low-pass Fourier filter, and are used for model fitting. All measurements are
given in cytometer-based relative fluorescent units (RFU). B) Trend in distribution-shape variation: Log-log linear regression coefficients
quantify trends in distribution-shape variation as a power-law relationship between distribution variance (s2) and mean (m): log10s2~alog10mzb;
a~1:7+0:2 b~{0:3+0:3 (R2 = 0.89, coefficients 695% confidence). Dashed lines demonstrate Poisson-like scaling (‘Poisson’, a= 1) and over-all
distribution scaling (‘Scaling’, a= 2). C) Characteristic distribution shape: Smoothed, autoflorescence-deconvolved histograms were shifted by a
constant fluorescence to a fixed mean (specified by the median over the set of integration clones, m0), and fluorescence values were scaled about that
mean according to the variance regression in 1B (inset), by a factor l~ m0=mð Þa=2 with a= 1.7 (thin curves). The grey curve averages the transformed
distributions and represents a ‘typical’ HIV-LTR expression profile that is wide (coefficient of variation =s0/m0,60%) and highly skewed.
doi:10.1371/journal.pcbi.1000952.g001
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clones to identify trends in the variation of single-gene expression

distributions over integration sites.

Bursting gene expression quantitatively accounts for HIV-
1 LTR integration-clonal distributions

While the analysis above provides intuition as to the dynamics

and regulation that may underlie our experimental observations of

the HIV LTR, it is solely a qualitative assessment based on the

assumption of ‘burstiness’ and comparisons to ‘stereotypical’

model distributions. In reality, model distributions vary continu-

ously between regimes, and means and variances provide an

incomplete characterization of the actual distribution shapes.

Therefore, to better determine the degree to which transcriptional

‘bursting’ best accounts for our experimental distributions, and the

degree to which it can be distinguished from other possible

dynamic regimes, we used a systematic fitting routine to identify

the best-fit combination of transcription rate and gene-state

transition rates for each distribution. Transcript degradation,

protein production, and protein degradation rates (kt
2, kp

+, and

kp
2, Fig. 2A) were fixed at values that were separately measured.

An important indicator of the dynamic regime of our system is

the average time that the promoter remains in the active

configuration following a gene activation event, relative to the

average life time of a transcript (see Fig. 2B), specified by t= kt
2/

kr, which we refer to as the ‘active duration’ (t). We therefore

began by identifying best-fit sets of model parameters for each

clone over a range of fixed values for t. We arrived at a robust

estimate of the range of parameters for which the model

quantitatively accounts for our measured distributions by consid-

ering the ratio, Devr, of each best-fit deviation at a given t, to a

bootstrap-estimated 95% upper bound on the deviation expected

due to uncertainty in our measurements, which served as a metric

for identifying model fits whose quality was statistically compara-

ble. Fits for which the values of Devr differ by less than 1 for a given

clone were considered to be effectively indistinguishable, since

their differences may be accounted for by uncertainty in our

experimental data, and these fits were thus considered to identify a

range of parameters for which the model gives a statistically

comparable account. The work-flow for our analysis is summa-

rized in Table S1; the definitions that we used to quantify fit

deviations, as well as the error model used for our bootstrap error

calculation, are discussed briefly in the Materials and Methods,

and in more depth, Text S1, Secs. S.I and S.VII, together with

Fig. S1.

We find that the optimal agreement between model and

experiment always occurs at short active-state durations (sample

fits given in Fig. 3A), with deviations increasing for larger values of

t (Fig. 3B), past a distinguishability cut-off (where Devr has

increased by 1) that effectively marks the resolution limit of our

analysis, which we call tMax for each clone (Fig. 3C). The value of

tMax defines a range of active durations (bounded below by t = 0),

for which the quality of model fits for a given clone is comparable,

and acts as a measure of how well our analysis can distinguish a

‘bursty’ underlying dynamic from other regime possibilities. Small

values of tMax indicate model fits where short-lived gene activation

events, which are a hallmark of transcript production in bursts,

provide a significantly better account of our experimentally

measured distributions than a less noisy dynamic (i.e. one specified

by longer active durations). Because we do find that the best model

fits always occur at the shortest active durations (where the relative

deviation Devr = Devr
Opt, Fig. 3B), we conclude that a transcriptional

dynamic in the ‘bursting’ regime does indeed always give the best

quantitative account of our data, and we further note that larger

predicted transcriptional bursts (generally associated with brighter

clones) are correlated with better regime resolution (Fig. 3C).

Finally, we note that our systematic distribution fitting procedure

Figure 2. Transcript production in bursts qualitatively explains HIV LTR distribution shapes and variation with integration site. A)
Model schematic. wa/r = active/repressed gene state, T = Transcript, P = Protein, X = Degraded, k= Probability/unit time. Bold parameters are
considered to be integration-site dependent, while others were measured separately and fixed for all clones. All rates are measured relative to the
transcript degradation rate, kt

2. B) Model regimes depend on the ratio of gene-state to transcriptional dynamics: ‘Fast’ (ka~kr~10kt
{), ‘Slow’

(ka~kr~0:1kt
{), ‘Intermediate’ (ka~kr~kt

{), ‘Bursting’ (ka~0:5kt
{, kr~10kt

{). Transcript production rates (kt
+) for sample distributions are set

to reproduce the same mean number of transcript copies (left) and protein copies (right) at steady state as predicted for the ‘typical’ experimental
distribution in Fig. 1C; autoflourescence is not included, and distributions are binned on a linear RFU scale for comparison. C) Distribution shape-
variation in the bursting regime: burst-frequency variation (ka) leads to an approximate Poisson-like shape-variation, burst-size (b) yields an
approximate distribution-scaling shape variation, and the combination with ka!m0:3, b!m0:7 (combined) gives a shape-variation most closely
resembling the experimental data (compare Fig. 1B). Insets are sample, log-binned distributions with varying burst size or frequency. The fixed
parameter in each sample is set to the value that approximately reproduces the ‘typical’ distribution shape in Fig. 1C.
doi:10.1371/journal.pcbi.1000952.g002
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always resulted in improved fits over those obtained by only

considering the first two distribution moments, with the improve-

ment often statistically significant. Nevertheless, small systematic

deviations remained, which are discussed further in Fig. S2.

Transcriptional burst size is the primary feature that
varies across viral integrations

From the optimal fits above we identified best-fit transcriptional

burst sizes and frequencies that specify the predicted transcriptional

dynamics for each integration clone. Importantly, we find that the

transcriptional burst size is the primary feature that varies over the

set of genomic environments sampled by our 31 viral integrations,

increasing from a few transcripts in very dim clones to tens of

transcripts in very bright clones (Fig. 4A, with s/m= 3.5 for the

distribution of log10(b)). Consistent with the qualitative analysis in

Fig. 2C, we find that transcriptional burst size varies approximately

sub-linearly with expression-distribution mean (b!m0:76, R2 = 0.66).

In contrast, the transcriptional burst frequencies inferred through

our analysis are scattered about a characteristic value of one burst

per several transcript degradation times, corresponding to several

transcriptional bursts per cell-division time (Fig. 4B). In addition,

these frequency values vary no more than several-fold (s/m= 2.2 for

log10(ka)), and they demonstrate little correlation with distribution

mean (ka!m0:2, R2 = 0.2). These results were maintained, to within

the accuracy of our analysis, when the scattering gate used to control

for cell-size variability in our experimental distributions was

decreased by a factor of 6 from the value that was found to be

optimal for our analysis (see Text S1, Sec. I and Fig. S4), indicating

a robustness to this source of uncertainty, which had been found to

significantly impact results from other cytometry-based analyses of

expression variability [38]. Further, we find no significant

correlation between the inferred transcriptional burst sizes and

burst frequencies that might influence the interpretation of their

trends with expression mean (see Fig. S5).

Our findings thus indicate that burst-size variation makes the

dominant contribution in controlling single-gene expression

profiles and represents the primary feature of transcriptional

dynamics whose modulation distinguishes typical bright from dim

clones. Importantly, the trends noted in Fig. 4 characterize the

modulation of a ‘typical’ LTR integration by the sampled genomic

environments. However, we must emphasize that the significant

scatter of both the burst sizes and burst frequencies inferred for

each individual clone about these ‘typical’ variations, as well as the

possibility that a different trend may exist for very dim integrations

(which were not considered in this study), suggest a potentially

richer behavior that may still be uncovered through further study.

Another recent study has also considered a two state model to

analyze expression variability from the HIV LTR [56]. This study

similarly suggests that transcript production occurs in bursts and

that both burst size and frequency vary with LTR integration

position, though the analysis is qualitative, based only on

consideration of distribution moments. In contrast to our findings,

they emphasize burst frequency modulation as structuring

distribution-shape variation over integration positions, as well as

in response to pharmacological perturbation, though the later

finding is difficult to interpret, as a steady-state model is considered

to analyze data that are clearly varying in time. Additional

quantitative analysis, including systematic model fitting, would be

necessary to characterize the relative contributions of burst-size

and burst-frequency modulation in this study, and to determine

whether its findings are consistent with our own.

Distinguishing modes of integration-site regulation of
transcriptional dynamics

A correlate of our findings – that transcription in short

bursts underlies basal expression heterogeneities from the HIV

LTR in the absence of Tat – is that the active promoter

configuration is short-lived. This implies that the promoter

would be observed in the active configuration for only a small

fraction of cells in a clonal population at any given time at

steady state. The value of this fraction in the two-state model,

which we refer to as the ‘active fraction’, f, is related to the

Figure 3. Transcriptional bursts are short, but only an upper bound on their duration can be resolved. A) Sample fits for several fixed
values of burst duration, t (measured relative to the transcript degradation time): experimental distribution (solid curve with 95% confidence region
in grey); optimal fit at small t (long dash); fits for larger t (short dash), demonstrating increased deviations (t increasing along arrow in for inset). B)
Relative fit deviation, Devr decreases for shorter active duration t, for each clone (solid lines), and are optimal (Devr = Devr

Opt) when burst
durations are shortest (i.e. in the bursting regime). Devr2Devr

Opt = 1 (dashed line) is considered a cut-off, beyond which fit quality is significantly
worse than the optimum, specifying a distinguishability cut-off upper-bound on t, marked by the intersection of dashed line and the solid lines and
referred to as tMax for each clone. C) Resolution of bursting dynamics: Calculated upper-bound active-duration (tMax ) and optimal transcriptional
burst size (bOpt) for each clone. Predicted large transcriptional bursts (bOpt&1) identify clones for which the inferred transcriptional dynamics differ
significantly from continuous transcription at a single fixed rate, and small tMax indicates good resolution of short bursts from less ‘noisy’ dynamics.
doi:10.1371/journal.pcbi.1000952.g003
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activation frequency (ka, whose value is relatively well resolved

for each clone by our analysis, Fig. 4B) and active duration (t,

for which our analysis only provides an upper bound tMax,

Fig. 3C), as f ~ka= kazkrð Þ~ ka=k{
t

� �
t= 1z ka=k{

t

� �
t

� �
. Our

analysis provides a predicted upper bound on this fraction for

each clone as fMax~ ka=k{
t

� �
tMax= 1z ka=k{

t

� �
tMax

� �
(Fig. 5,

bars), where any value of f below fMax is consistent with our

analysis. Small values of fMax specify clones for which the

active fraction is indeed predicted to be small, while larger

values indicate clones for which its value is less well resolved.

In particular, our analysis predicts that although the brightest

and dimmest integration clones considered in our study differ

in mean expression by a factor of approximately 30, the

brightest clones will nevertheless only be observed with the

integrated LTR in the ‘active’ transcript-producing configura-

tion less than 20% of the time.

Transcriptional burst size – defined by the ratio of the

transcription rate to promoter-inactivation rate (or the

product of transcription rate and the active duration

b~kt
z=kr~ kt

z=kt
{ð Þt) – can be modulated by two qualita-

tively difference ‘Modes’ of regulation. First, integration position

could affect the dynamics of promoter inactivation (kr),

reflecting integration-position effects on the stability of the

active configuration, possibly due to direct effects of the

surrounding chromatin configurations on the energetics of the

active configuration and/or the stabilizing effects of regulatory

factor recruitment by surrounding regions (Mode 1). Alternate-

ly, integration position could affect transcriptional productivity

in the active state (kt
z), which may also be affected by

modulation of chromatin configuration and/or recruitment of

regulatory factors by surrounding genomic regions (Mode 2).

We have seen in our analysis to this point, that model fits of our

cytometry data cannot separate the two constituent parameters

that define transcriptional burst size, and therefore they cannot

resolve these two possible ‘Modes’ of its regulation (e.g. Fig. 3; a

similar parametric indeterminacy has been noted by [46,48]).

Furthermore, the potentially overlapping effects of many

molecular regulatory mechanisms on transcriptional dynamics

may make it difficult to define experiments that directly

distinguish these ‘Modes’, and to decouple their regulatory

contributions.

However, our analysis predicts that each ‘Mode’ of control leads

to a distinct pattern of active-fraction variation over the set of

integration clones (Fig. 5, symbols): for Mode 1 the active-fraction

varies proportionately to the clonal expression mean, whereas for

Mode 2 the scatter in active fraction predicted over our set of

integration clones reflects scatter in the predicted burst frequen-

cies. We thus suggest that future experimental analysis of the active

fraction may provide a means of distinguishing between these two

key ‘Modes’ of integration-site modulation of gene expression.

Discussion

Our findings, that expression from the HIV promoter is

characterized by transcript production in bursts and that the site

of viral integration primarily modulates transcriptional burst size,

contribute to an emerging paradigm for transcriptional regulation

Figure 4. Modulation of transcriptional bursts by integration site. Best-fit transcriptional burst size (b) and burst frequency (ka) that minimize
the relative fit deviation (Devr) were calculated at kr~20kt

{ (which specifies a short active duration that was nearly optimal for all clones). Error bars
represent the maximum 95% confidence interval for simultaneous parameter variations that increase Devr by 1. Log-log regression coefficients
represent power-law scaling of fit parameters with distribution mean (m, measured in cytometer RFU), of the form log10 xð Þ~alog10 mð Þzb (x = b or
ka), and are given with 95% confidence intervals. A) b: a= 0.7660.14; b= 0.1360.2; R2 = 0.66. B) ka: a= 0.260.15; b= 20.560.2; R2 = 0.2.
doi:10.1371/journal.pcbi.1000952.g004

Figure 5. Active-fraction variation distinguishes modes of
transcriptional regulation. The best-fit restriction of t below tMax

in Fig. 3 specifies an upper bound on the predicted fraction of cells with
the LTR in the active state (f ~fMax), which is marked by bars for each
clone. Each Mode of integration-site modulation of transcriptional
dynamics leads to a different expected variation of f that distinguishes
them. For Mode 1, active-state stability varies over integration clones,
with the active-state transcription rate fixed (kt

z~300kt
{ was used for

this example), while for Mode 2 the active-state transcription rate
varies over integrations, with the active duration fixed (kr~10kt

{ was
used for this example).
doi:10.1371/journal.pcbi.1000952.g005

HIV Promoter Integration Controls Expression Noise

PLoS Computational Biology | www.ploscompbiol.org 7 September 2010 | Volume 6 | Issue 9 | e1000952



that emphasizes the importance of stochastic/probabilistic dy-

namics [20,27,50,57]. In particular, the expression patterns that

we observe from single integrations of the HIV promoter cannot

be accounted for by transcription from a single, fixed state of

promoter activation, which would involve a single transcription

rate that specifies a comparatively narrow single-gene expression

profile with little variation over a population of cells. Rather, our

analysis predicts that the large expression heterogeneities observed

in this system (Fig. 1) are shaped by probabilistic transitions

between (at least) two distinct configurations (Fig. 2A), with the

promoter spending only the minority of time in the transcription-

ally active configuration even for the most productive integrations

(Fig. 2B, Figs. 3B,C and Fig. 5). Furthermore, our analysis suggests

that an essential component of the regulatory effect of genomic

environment at the viral integration site is to modulate the dynamics

of transitions between states of differing transcriptional activity, in

addition to possible effects on the transcriptional activity of each

state (Figs. 4 and 5). Of note, it is only by systematically fitting a

quantitative model to our measurements that these underlying

dynamics were revealed, as quantitative single-cell measurements

of protein expression only provide an indirect measure, and it is

only by applying our systematic analysis to observations across a

diverse sampling of integration-modulated expression patterns that

we succeeded in extracting a characteristic effect of integration

position on transcriptional dynamics.

What features of the HIV-LTR determine ‘bursty’
transcription?

Transcript production in bursts is a particularly ‘noisy’

transcriptional dynamic that can generate significant cell-to-cell

expression variability, which is reflected in wide and highly skewed

single-gene expression distributions across clonal populations

(Fig. 1C, 2B). In particular, the ‘typical’ distribution identified in

Fig. 1C demonstrates a coefficient of variation (standard

deviation/mean, or relative width), corresponding to 60%

variability. This value is significantly larger than the values

observed for most eukaryotic promoters in several large-scale

studies (compare to data in: [38,39,58]), and we anticipate that a

number of features of the HIV promoter, some of which are

common in mammalian promoters, may conspire to account for

this ‘noisy’ expression pattern.

Similar to HIV expression shortly after infection, our system

lacks the viral transcriptional activator Tat. In the absence of Tat

the LTR has been observed to bind repressive factors that

maintain a non-conducive chromatin configuration [14,59,60,61],

and the likely greater stability of this ‘inactive’ configuration may

limit the fraction of time that a transcriptionally ‘active’

configuration can be maintained. On the other hand, like many

mammalian promoters, the HIV LTR contains multiple binding

sites for repressing and activating elements (which still bind in the

absence of Tat), several of which affect chromatin state and bind

competitively and/or cooperatively. For example, the histone-

acetyltransferase (HAT) p300 and the activating NF-kB compo-

nent RelA are thought to bind their respective HIV-1 Sp1 and

NF-kB sites cooperatively to activate transcription, and in

competition with the histone deacetylase (HDAC) recruiting

activity of SP1 and the p50/p50 homo-dimer that bind the same

sites respectively to inhibit transcription [10,62–66]. One may

hypothesize that this competition could thus lead to an infrequent

all-or-none binding of activating factors that directly remodel

promoter-bound nucleosomes to establish a transcriptionally

conducive chromatin configuration [10]. In addition, the LTR

includes a number of other cis-regulatory elements that bind

transcriptional activators such as NFAT and AP-1 [67,68], as well

a TATA motif that contributes core transcriptional complexes

[69,70]. These elements may enable more efficient recruitment,

assembly, and stabilization of a productive transcription complex,

with transcriptional reinitiation potentially yielding multiple

transcripts from each gene-activation event (the presence of a

TATA box has been linked to increased expression noise in other

studies as well, see for example: [41,47,71]). In combination, the

above features may specify transcript production during short,

infrequent bursts, consistent with the results of our analysis.

Intriguingly, a recent mammalian genome-wide mapping of

HAT and HDAC association found them simultaneously bound to

a large number of active promoters, suggesting that simultaneous

regulation by competitive epigenetic regulators may be more

common than previously thought [72]. It is therefore possible that

transcript production in bursts represents a more general feature of

mammalian expression regulation, and it will be interesting to

discover how properties of the HIV promoter shape its

transcriptional dynamics, and whether similar promoter architec-

tures specify ‘bursty’ dynamics for other genes.

Significance of burst-size variation over LTR genomic
integrations

Our findings suggest that transcriptional burst size is a more

‘locally’ determined property, more sensitive to those features of

genomic environment that vary significantly between integration

sites, whereas transcriptional burst frequency is, by comparison, a

more ‘globally’ determined feature, specified by interactions with

the cellular environment that may be more promoter-specific but

less significantly integration-site dependent. Burst frequency

reflects the statistics of assembling the more active promoter

configuration from an inactive one, and we might speculate that

this transition depends in part on large-scale chromatin reorga-

nization and dynamics that are coordinated globally across the

nucleus [73,74,75]. Burst size, on the other hand, is a property of

the transcriptionally ‘active’ configuration, and we may conjecture

that some of the reorganization that accompanies its establishment

also may provide opportunities for important ‘local’ features to

exert their regulatory influences. For example, chromatin

remodeling may expose new binding sites for transcriptional

regulators [31,76], and the initiation of transcriptional activity

could contribute to association with ‘nearby’ transcription factories

where additional transcriptional regulators are localized, and

where interactions with surrounding (and possibly distant)

genomic regions may be enhanced [73].

At a more basic level, a feature of transcriptional burst size that

could more generally account for a greater sensitivity to genomic

environment is its complimentary dependence on transcriptional

productivity and the stability of the active promoter configuration.

We had noted earlier that this complimentary dependence

specifies two distinct ‘Modes’ by which surrounding genomic

regions may differentially affect the resulting transcriptional

dynamics (see Fig. 5), both of which might be effected by

recruitment of transcriptional regulators by surrounding genomic

regions, epigenetic features of the surrounding regions, and the

transcriptional activity of neighboring genes [15,75,77]. If we

assume that a ‘typical’ more productive integration increases ka, t,
and kt

z all proportionately (i.e. without assuming a weaker

dependence for burst frequency), then the dual dependence of

burst size would dictate that it vary as burst frequency squared

(b ~kt
ztð Þ!ka

2), and the scalings b!m2=3 and ka!m1=3 would

result, which fall within the 95% confidence interval of our

regression analysis in Fig. 4. This possibility is consistent with our

suggestion in the previous subsection that the architecture of the

HIV LTR may effectively couple the control of gene activation
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and inactivation, and with the hypothesis that the chromatin

regulators that may control these dynamics could also modulate

the active-state transcription rate either directly or indirectly. Such

a combined ‘Mode’ of modulation would specify an active-fraction

variation intermediate between that predicted for the two pure

‘Modes’ of modulation considered in Fig. 5, and might be used to

distinguish it experimentally.

Burst-size variation with promoter induction level from a

tetracycline-inducible construct at a single genomic position has

been noted in another study using mammalian cells [46], though

this result contrasts with a number of yeast studies that have

identified the frequency of gene-activation events as the primary

feature that varies with genetic-construct induction level [45,47],

over a single set of three targeted genomic loci [36], and over a

large set of endogenous promoters [38,39]. It thus remains to be

determined whether our observation of burst-size variation

represents a mode of transcriptional regulation particular to

mammalian cells or to transcriptional control by genomic

environment, or whether it is determined by any specific features

of the HIV promoter that dictate a unique coupling to mammalian

genomic environments that might be shared by other ‘bursty’

promoters and cell types. Future studies investigating greater

numbers of genomic integrations, in our and other systems, that

correlate expression variability with promoter and surrounding

genomic sequences, may provide important answers to such

questions.

Basal transcription as a determinant of HIV-infected cell
fate

The observation that integration site primarily modulates

transcriptional burst size from the HIV promoter implies that

viral integrants sample a ‘noisy’ set of basal expression distribu-

tions by semi-randomly integrating in the genome. Specifically,

relative distribution widths (i.e. the coefficient of variation) are

approximately maintained and comparable between ‘dim’ and

‘bright’ integrations. This contrasts with the naive expectation that

dimmer integrations should demonstrate greater relative expres-

sion heterogeneity due to larger relative fluctuations typically

generated by smaller numbers of molecules, as would be the case if

burst frequency were the primary covariate over viral integrations

(see Fig. 2C), and as was found to be the case over a large sampling

of yeast promoters [38,39].

The basal expression patterns, and their associated expression

noise, that were measured here reflect the range of expression

dynamics that may be generated initially from an HIV infection

after its semi-random integration into the host genome but prior to

significant production of viral proteins [4,9]. Productive viral

replication depends on subsequent production of the HIV protein

Tat, which mediates expression transactivation by enhancing both

transcript elongation from the LTR as well as the binding of other

transcriptional activators [51,78–81]. In an intact virus, this

positive feedback would act to amplify the basal expression

fluctuations observed here.

We anticipate that certain ranges of parameters representing

integration-site dependent basal fluctuations in promoter activity

may act to specify distinct infected-cell fates, as illustrated in

Figure 6 where the drawn region boundaries are hypothetical and

the insets depict representative expression phenotypes that result

when Tat is expressed from the HIV LTR in a minimal viral

system that we had studied in earlier work [4,10]. Promoter

integrations with smaller basal transcriptional burst sizes, and with

frequencies that do not effectively couple one burst to the next, will

never produce sufficient Tat for transactivation and may represent

unproductive infections (Region I). On the other hand, promoter

integrations specifying larger basal burst sizes and sufficient

frequencies will quickly and stably transactivate after a small

number of initial transcriptional bursts and may represent a

productive infection (Region II). In contrast, those integrations

with small to intermediate basal burst sizes and frequencies will

only infrequently (stochastically) generate sufficient Tat for positive

feedback activation. Moreover, the transactivated state may be

subsequently destabilized by the infrequent occurrence of

consecutive smaller and more widely spaced bursts, to generate

a bimodal expression pattern (Region III). We have hypothesized

that the dynamics of this phenotype, which include significant

delays in switching between non-productive and productive

expression phenotypes, may create a sufficient time window for

the establishment of latent infections in vivo [4,10]. Future

experimental and computational analysis may provide additional

insights into the role of Tat in amplifying basal, integration-

modulated, expression fluctuations, as well as their hypothesized

role in fate determination of HIV-infected cells.

Implications for investigations of genomic architectures
in health and disease

While other studies have considered the effects of genomic

environment on mean expression, we have analyzed its effects on

expression heterogeneities. By applying an integrated computa-

tional and experimental approach, we have characterized the

modulation of underlying transcriptional dynamics by genomic

environment in human cells. Since classes of human promoters

often share common enhancer and repressor motifs, it is possible

that two such promoters at different genomic loci would

demonstrate significantly different transcriptional dynamics, as

Figure 6. Basal promoter fluctuations as determinants of
infected-cell fate. Possible decomposition of the ‘space’ of basal
burst-parameters inferred by the current analysis into ranges of
parameter combinations that, in the presence of positive feedback
from Tat, may lead to active viral replication vs. latent fates. Region I:
Basal transcription pattern never leads to Tat-transactivation. Region II:
Fast transactivation always leads to a stable highly expressing state.
Region III: Bimodal expression patterns, where large fluctuations in
basal transcriptional bursting can infrequently drive transitions from
basal to transactivated states. Inset histograms demonstrate represen-
tative expression patterns for single-integration clones of a similar
vector that includes Tat [4,10], and region boundaries are hypothetical.
doi:10.1371/journal.pcbi.1000952.g006
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we have observed from different integrations of a single promoter

in our system. In this way, genomic architecture would provide an

additional axis of expression regulation complementary to that

specified by individual promoter sequence architectures, and

promoter and genomic architectures might evolve in parallel to

optimize their coupled contributions to transcriptional control

[72,82–85]. Similarly, integrating viruses such as HIV, whose host-

cell specificity determines the range of possible genomic

environments that could be selectively sampled, may evolve

promoter architectures that best exploit this host-regulatory axis to

adopt a set of expression patterns that enhance, or even optimize,

viral replication fate.

Materials and Methods

Harvesting and infection of lentivirus
The HIV-1 based lentiviral plasmid, pCLG, (encoding the HIV-

1 LTR and GFP) was packaged and harvested in HEK 293T cells

using 10 mg of vector, 5 mg pMDLg/pRRE, 3.5 mg pVSV-G,

and 1.5 mg pRSV-Rev, as previously detailed [4,86]. Harvested

lentivirus was concentrated by ultracentrifugation to yield between

107 and 108 infectious units/ml. Approximately 103–106 infectious

units of concentrated virus were used to infect 36105 Jurkat cells.

Six days after infection, gene expression of infected cells was

transactivated by incubating Jurkats with a combination of 20 ng/

ml TNFa, 400 nM TSA, and 12.5 mg exogenous Tat protein

[10]. After stimulation for 18 hours, GFP expression was

measured by flow cytometry, and titering curves were constructed

by determining the percentages of cells that exhibited GFP

fluorescence greater than background levels. This titering curve

was used to attain the desired MOI (,0.05–0.10).

Clone selection and FACS analysis
Forty-eight single GFP+ LTR-GFP (LG) Jurkats (clones) were

sorted on a DAKO-Cytomation MoFlo Sorter into 96-well plates

and cultured for at least 4 weeks to allow for clonal expansion.

Infected cultures were analyzed via flow cytometry on a Beckman-

Coulter EPICS XL-MCL cytometer (http://biology.berkeley.

edu/crl/cell_sorters_analysers.html). Thirty-one single-integration

clones, whose expression histograms were sufficiently distinguish-

able from an autofluorescence profile for model fitting (with mean

fluorescence exceeding twice the autofluorescence mean), were

selected for further analysis.

Distribution processing
Cytometry measurements on 104 cells for each clone quantified

GFP fluorescence as well as forward and side scatter (FSC and

SSC). Live cells were selected by standard gating of FSC and SSC,

and further gated to select the mid 60% of FSC and SSC values.

This gating was optimized using a bootstrap approach to resolve

the GFP profile at the mean scattering measure, while eliminating

significant correlation between GFP distribution and scattering

(see Text S1 Sec. S.I for further discussion, Fig. S1, and Table S1).

GFP histograms were smoothed using an optimized low-pass

Fourier filter, and normalized to obtain probability distributions,

that were used for model fitting. Distribution deconvolution, for

the transformation applied in Fig. 2B, was accomplished using a

Weiner filter. Model fits were also obtained for distributions

resulting from a 10% scattering gate, and indicate no significant

effect on our parameter inferences (Fig. S4).

Model solution
The model in Fig. 2A represents a continuous-time discrete-

state Markov process described by a chemical master equation

[87], which was solved using an in-house Matlab routine (The

MathWorks, Inc.; code available upon request) for steady-state

protein distributions, which were then convolved with a separately

measured autoflorescence profile and converted to cytometer-

based RFU (Relative Fluorescence Units) values for comparison

with smoothed experimental distributions. Briefly, the master

equation was truncated at large protein and transcript numbers to

specify a finite system. A graded coarse-graining approach was

applied, whereby neighboring states at higher transcript and/or

protein number, where distributions admit a continuum approx-

imation, were binned together (probabilities summed), and

transition rates between binned states were approximated by

interpolation to estimate probability fluxes at the boundaries. The

coarse graining scheme reproduces the master equation at small

transcript and protein numbers (where no coarse-graining is

applied), and specifies a second-order approximation to the

corresponding Fokker-Planck equation at large protein and

transcript numbers. The resulting linear system was then

integrated in time until an effectively stationary distribution was

achieved by using a forward/backwards Euler method that

alternates treating transcript and protein transitions implicitly or

explicitly; this represents a fast and stable method, appropriate to

stiff systems and multi-dimensional PDEs [88]. Marginal coarse-

grained protein distributions were then calculated by summing

calculated probabilities over transcript numbers and gene states,

and the resulting distributions were interpolated. Solution accuracy

was established by comparing the first three moments of the

calculated distributions to their theoretical values (calculated

analytically, see Text S1, Sec. S.III), by varying the coarse graining

and the time step for the integrator, and by comparing our solutions

to those calculated using the Finite State Projection algorithm

developed by Munsky and Khummash [89], which allows a

rigorous calculation of numerical error for finite times, for several

test cases. Further details may be found in Text S1 Sec. S.II.

Fitting procedure
Fit parameters (ka, b = kt

+/kr, and kr) were varied using

the MATLAB minimization function ‘fmincon’ to identify

the combination that minimized the fit deviation, defined as

Dev~
P

i r
fit
i {rdata

i

� �2

=rdata
i , where r

data=fit
i is the predicted/

measured probability of counting a cell in cytometer bin i for the

data/fit.

Specifying non-fit model parameters
A number of model parameters quantify processes occurring at

spatially separate locations from the integrated LTR. These were

assumed to be the same for all integrations, and were specified

separately. Methods developed independently from this study

allowed us to calibrate relevant non-fit model parameters via

comparison between the measured transcript distribution for a

single clone, and the corresponding cytometry-based GFP

distributions (Foley, et al. manuscript in preparation). A conver-

sion factor between transcript number and RFU could be

estimated from the measured ratio of means, as

bT~mRFU=mT = 2.5 (mRFU=T = measured cytometry-based RFU/

transcript mean). By assuming transcriptional bursting, the ratio of

transcript to protein degradation rates could be calculated as

s2
RFU=m2

RFU

~
k{

p = k{
t zk{

p

� �� �
k{

p = k{
t zk{

p

� �� �
s2

T=m2
T

� �
, yielding a value of

k{
t =k{

p
~44 for our measurement. These constitute the remaining

quantities necessary to specify our model. While uncertainties in

these quantities would affect the values inferred for model fit

parameters, they would approximately affect the inferred fit

parameters for each clone by the same scale factor, preserving
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inferred trends in parameter variation over the set of integration

clones. These uncertainties were therefore not explicitly consid-

ered in our analysis (see Text S.1, Sec. S.VII for further

discussion). Quantifying the dilution of a synthetic non-degraded

fluorescence marker allowed us to estimate a cell-division rate of

0.05 h21, which served as an effective protein degradation rate

(k{
p ) in our model, and thus specified k{

t ~0:2 h{1; the absolute

values of these degradation rates were not essential to specifying

our model because steady-state distributions only depend on ratios

of rate constants, and all rates were therefore scaled relative to the

transcript degradation rate in our analysis. The relatively large

protein numbers in our system dictate that fluctuations in protein

production and degradation do not significantly influence

distribution shapes, and as long as the ratio kz
p =k{

p was chosen

to be a sufficiently large value, its specific value did not affect our

analysis; we chose kz
p =k{

p ~20. See Text S1, Sec. S.V for further

discussion of non-fit model parameters.

Quantifying experimental uncertainties and model-fit
discrimination

A bootstrap procedure was used to estimate a 95% upper-

bound on the value of Dev for our processed experimental

distributions (Devdata) that included uncertainties due to the finite

number of cells sampled and to specifying distributions at a single

scattering measure. Other sources of uncertainty, such as

cytometer PSF and distribution variability over time, were found

not to significantly affect our determination of trends in model-

parameter variations over the set of integration clones and were

not included (see Text S1, Sec. S.VIII, and Fig. S3). Model fits

whose deviations (Devfit) differed from each other by less than

Devdata were considered effectively indistinguishable, as the

differences in their quantified deviations might be accounted for

by uncertainty in our experimental distributions. 95% confidence

intervals about best-fit model parameters were calculated as

maximum variations for which the increase in Devr = Devfit/Devdata

was less than 1 (assuming simultaneous parameter variations), as

estimated using a Hessian-based quadratic approximation for

variation of Devr with respect to burst parameters and based on the

parametric sampling in Fig. 3 for kr.

Supporting Information

Figure S1 Distribution processing. A) 2-d histogram of fluores-

cence and forward scatter (FSC) values, as measured by cytometry

from 104 cells, for a sample clone. FSC is binned on a linear axis

covering values between 1 and 1024 (10 bits) in arbitrary units

(AU), and fluorescence values were log-binned over 4 orders of

magnitude in relative florescence units (RFU). B) Smooth 2-d

histograms were generated using a low-pass Fourier filter. The

dashed line highlights correlation between fluorescence and FSC

measures (we aim to account for this correlation in a distribution-

processing procedure), and the green line is drawn at the mean

FSC value, which specifies C) the ‘target’ GFP distribution at fixed

FSC that we aim to extract by our processing procedure. D)

Optimized gating. For each clone, a bootstrap approach was used

to determine the optimal fraction of the FSC range to gate the

data by (% Gate), which for each clone, minimizes the average

over the set of re-sampled (synthetic) data of the deviation between

each processed ‘synthetic’ data set and the ‘target’ distribution.

The distribution deviation is defined as in the main text, as

Dev~
P

i rprocess
i {rtartget

i

� �2
=rprocess

i , where rtartget is the target

distribution, rprocess is a processed synthetic distribution, both have

been normalized as probabilities, and the sum is taken over

cytometry bins. SDevTn marks the calculated value of Dev for each

clone, averaged over the set of synthetic data, and normalized by

the optimal value. The box plot shows the dependence of SDevTn

on the % Gate over the full set of clones that were fit, with box

edges marking the inter-quartile range (iqr), whiskers marking

1.5*iqr ( = 2s for a normal distribution), and ‘+’ marking outlier

clones. Though the minimal (optimal) value of SDevTn often

occurs for a gate slightly narrower than 60%, 60% is nearly

optimal for all clones and was used to process our data for analysis

and fitting. E) Alternate corrections. The average value of SDevT
over the set of clones (SDevTc), for each gate size, is calculated for

the different corrections mentioned in the text. Subtracting linear

correlation (‘lin’), or dividing the GFP by FSC values (‘Div’), makes

little difference compared to making no further correction (‘Cor’) in

reproducing the ‘target’ distribution. F) Fractional contribution of

cell-size variability to expression heterogeneity. For each clone,

after applying a 60% gate to select cells in the middle of the FSC

range, the fraction of the variance of the GFP histogram that

can be attributed to FSC variation (i.e. cell size variability), is

calculated as the R2 value for a linear regression between FSC and

GFP, equal to SFSC.GFPT2=SFSC.FSCTSGFP.GFPT, where

the brackets denote the population average. G, H) Gating for cell

size has little effect on distribution noise and skew. Square gates in

the FSC/SSC plane were defined by taking varying percentages of

the total cells for each clonal population about the mean FSC and

SSC values (Gate %). For each Gate %, the distribution coefficient

of variation (CV =s/m, G), or skewness (‘skew’ = m3/s3, m3 = 3rd

distribution central moment, H), was calculated for each clone,

relative to the value measured at the 60% gate used in the main

text. The mean value of this ratio over the set of integration clones

is given by the red line at each Gate %, with the box marking the

inter-quartile range (iqr) and the bar marking 1.5*iqr.

Found at: doi:10.1371/journal.pcbi.1000952.s001 (1.09 MB TIF)

Figure S2 Fit quality and deviations. A) Fit uncertainty. The

relative fit deviation (Devr) for each clone, defined as the ratio of

Dev for the fit to a 95% upper-bound on the value expected due to

uncertainty in our experimental distribution (see main text and

Sec. S.I), are plotted for the systematic fits described in the main

text (‘Sys’) and for the moment fits (‘Mom’) described in Sec. S.VI.

Values of Dev below 1 (marked by the dashed line) indicate fits that

cannot be significantly improved, within the resolution of our data.

B) Fit improvement. The decrease in Devr, in going from the initial

moment-based fits to systematic fits (dDevr), is given, with values

greater than 1 (marked by the dashed line) indicating clones whose

fits were significantly improved by the systematic fitting procedure.

C) Shape of the fit deviation. For each of our 31 distribution fits,

the deviation between the model prediction and the smooth

experimental data is plotted on the log-binned fluorescence axis on

which our cytometry data was ginned. Each fit deviation is scaled

so that its peak absolute value is equal to 1, and each was

translated to a mean of 100 RFU to superimpose them. Deviations

were only calculated for bins whose probability was greater than

2% of the distribution maximum. D) Fit-deviation significance.

The data in C is re-plotted with the deviation at each bin

normalized by the bootstrap estimated 95% upper bound on its

expected value due to uncertainty in our data, as calculated in Sec.

S.I. Absolute values greater than 1 (marked by the dashed lines)

indicate bins for which the fit deviation is significant.

Found at: doi:10.1371/journal.pcbi.1000952.s002 (1.87 MB

TIF)

Figure S3 Distribution stability over time. A) Distribution

variation over time is not correlated among clones. Six clones

and a control with no plasmid that quantifies cellular autofluo-

rescence (‘Aut’) were followed over 6 consecutive days by
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cytometry. Daily fluctuations in fluorescence mean (mt, normalized

by the value on the first day m0, for each clone) are uncorrelated

over the sampled populations for any pair of time points (P.0.5).

B) Distribution shape variations over time for any clone are

approximated by a distribution scaling of all fluorescence by a

constant value, such that the variance (s2) changes approximately

as the mean squared (m2). For small deviations, this translates as

the relative variance (st
2 at each time, normalized by its value on

the first day, s0
2 for each clone) changing in proportion to twice

the change in mean, which is plotted as a reference line (‘Scaling’).

C) Distribution variability over time for a sample clone

approximately demonstrates a ‘scaling’ variation, as noted in B,

which is equivalent to translating the distribution on the log-

binned fluorescence axis on which the histogram is plotted. D)

Distribution rescaling. For the sample clone in C, the fluorescence

values each day are scaled by the ratio of the mean on the first day

to the mean on that day. This rescaling leads to improved

distribution stability over time. In particular, the distribution

variability is now approximately within the experimental uncer-

tainty due to our distribution-processing procedure. This suggests

that distribution drift over time can be treated as a simple scaling

of fluorescence values, perhaps due to metabolic drift, as discussed

in the text. E, F) Best-fit model parameter variability over time is

comparable to 95% confidence intervals calculated for sources of

uncertainty considered in the main text. For each clone, the fitting

procedure of the main text was applied to each processed

experimental distribution, for each of the six days. Best-fit

transcriptional burst frequencies (E) and burst sizes (F) for each

clone, relative the value obtained for fitting the average of its

distribution over time, is plotted against the log expression mean

(averaged over the six days). Bars about the value of 1 represent

95% confidence intervals, as calculated in the main text, which do

not include uncertainty due to distribution variability over time.

Found at: doi:10.1371/journal.pcbi.1000952.s003 (0.86 MB TIF)

Figure S4 Gating for cell size does not significantly affect

inferred trends in burst-parameter variation with integration

position. A, B) The experimental distributions obtained by

applying a 10% square gate in the FSC/SSC plane (as discussed

in Sec. S.I.7) were fit following the procedure in the main text

(‘narrow gate’), and the resulting best-fit model parameters

compared to those obtained for each clone based on our optimized

distribution processing procedure (‘optimal gate’, = 60%), that

were given in Fig. 4. Bars represent 95% confidence intervals, as

obtained in the main text. Fit parameters for the ‘narrow gate’

data only demonstrate slight differences from the ‘optimal gate’

data, and demonstrate no significant difference in trend with

expression mean, confirming that our results are robust to gating

for cell size.

Found at: doi:10.1371/journal.pcbi.1000952.s004 (0.55 MB TIF)

Figure S5 No significant correlation between transcriptional

burst size and frequency for the HIV LTR. The best-fit

transcriptional burst frequencies (ka), which were inferred for

our system in Fig. 4 of the main text, are plotted against the

corresponding inferred transcriptional burst size (b) for each clone

(*) in a log-log plot to investigate possible correlations. Diagonal

lines (green) represent combinations of burst size and frequency

that specify constant mean expression (m / ka b in the bursting

regime). The 95% confidence region calculated in the main text

are ovals in the b6ka plane, and become deformed to rounded

crescents in the log-log plot, represented by the closed curves

about each combination of best-fit parameters (blue). Notice that

in the region closest to the each best-fit parameter combination,

the corresponding confidence boundary generally depicts less

constrained variation in the direction that preserves expression

mean (i.e. parallel to the drawn lines of constant mean). Linear

regression reveals a slope of 0.1760.3 (95% confidence), with an

R2 value of 0.05, and a Pearson correlation coefficient of 0.2. We

thus conclude that significant correlations between burst size and

frequency, that might affect the trends in these parameters with

distribution mean that were analyzed in Fig. 4 of the main text, are

not present in our system.

Found at: doi:10.1371/journal.pcbi.1000952.s005 (0.35 MB TIF)

Table S1 Work flow.

Found at: doi:10.1371/journal.pcbi.1000952.s006 (0.97 MB TIF)

Text S1 Supplement to ‘‘HIV-Promoter Integration Site Pri-

marily Modulates Transcriptional Burst Size, Rather Than

Frequency.’’

Found at: doi:10.1371/journal.pcbi.1000952.s007 (0.89 MB PDF)
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