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ABSTRACT  

Complete eradication of HIV-1 infection is impeded by the existence of cells that harbor 

chromosomally integrated but transcriptionally inactive provirus. These cells can persist for years 

without producing viral progeny, rendering them refractory to immune surveillance and antiretroviral 

therapy and providing a permanent reservoir for the stochastic reactivation and reseeding of HIV-1. 

Strategies for purging this latent reservoir are thus needed to eradicate infection. Here we show that 

engineered transcriptional activation systems based on CRISPR/Cas9 can be harnessed to activate viral 

gene expression in cell line models of HIV-1 latency. We further demonstrate that complementing Cas9 

activators with latency-reversing compounds can enhance latent HIV-1 transcription, and that 

epigenome modulation using CRISPR-based acetyltransferases can also promote viral gene activation. 

Collectively, these results demonstrate that CRISPR systems are potentially effective tools for inducing 

latent HIV-1 expression and that their use, in combination with antiretroviral therapy, could lead to 

improved therapies for HIV-1 infection. 
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INTRODUCTION 

Since its identification in 1983, HIV has remained a global pandemic. An estimated 35 million 

people worldwide are currently living with HIV type 1 (HIV-1), and an estimated 39 million people 

have died of AIDS-related illness since the onset of the epidemic (see UNAIDS report: 

http://unaids.org/globalreport/Global_report.htm). Strict adherence to combination antiretroviral therapy 

(cART) has significantly improved the quality of life and life expectancy of many infected individuals, 

transforming HIV-1 into a chronic, manageable illness in the industrialized world. However, despite its 

durable capacity to inhibit viral replication, cART does not cure HIV-1 infection since it cannot address 

the residual transcriptionally silent but replication-competent population of virus hidden within certain 

cells1-3. This so-called latent reservoir is primarily established when infected CD4+ T cells revert to a 

resting memory state4,5. The resulting cells are largely non-permissive for viral gene expression and 

therefore do not generate new viral progeny5,6. Because latent HIV-1 is refractory to both immunological 

surveillance and cART intervention, its existence poses a major obstacle to complete viral eradication7-9. 

Though the mechanisms underlying latency are complex10-13, several strategies have been 

developed to activate this HIV-1 reservoir12, thereby rendering it susceptible to cART eradication. 

Because latent virus responds to T cell activation signals, proinflammatory cytokines – such as 

interleukin 2 (IL-2)14 and IL-715 – can be used to induce its emergence from resting CD4+ T cells. 

Protein kinase C (PKC) agonists that stimulate viral gene expression via NF-κB signaling16 – including 

bryostatin17, prostratin18,19 and other synthetic analogs20,21 – are also candidates for this strategy. 

Additionally, because histone deacetylation can induce repressive changes in chromatin structure at the 

HIV-1 promoter, histone deacetylase (HDAC) inhibitors have emerged as a promising approach for 

reversing latency22,23.  

Cytokine therapy, however, has been unable to completely purge latent virus24,25 and has even 

led to toxicity26 and/or long-term depletion of CD4+ T cells27. Additionally, PKC agonists may be unable 

to activate latent HIV-1 in repressive chromatin, and to date several HDAC inhibitors have demonstrated 
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sub-optimal results in clinical trails28,29. The use of high levels of HDAC inhibitors may also affect 

global gene expression30, potentially leading to unwanted side effects31. These limitations underscore the 

need for new strategies capable of stimulating latent HIV-1 expression in a robust and targeted manner. 

The emergence of versatile genome modulation and editing technologies32,33 – such as those 

based on zinc-finger domains34, TAL effector proteins35, and the RNA-guided CRISPR/Cas9 system36 – 

can offer new means to combat HIV-1 infection. For example, the relative ease with which these tools 

can be configured, as well as their broad versatility, has endowed investigators with the ability to confer 

HIV-1 resistance upon primary cells37 and stem cells38-40 via modification of the CCR5 gene. Indeed, 

this approach recently showed evidence of efficacy in a Phase I clinical trial41. Other strategies 

facilitated by this technology include the disruption42 and excision43-45 of proviral DNA from HIV-

infected cells, the disruption of endogenous host factors critical for HIV-1 integration46,47, and the 

attenuation of HIV-1 replication via transcriptional repression48,49. Among the three major DNA-

targeting systems, CRISPR/Cas9 can readily be directed to nearly any genomic locus via RNA-DNA 

complementary base pairing using a chimeric single guide RNA (sgRNA)50. Though this system is 

typically used for inducing DNA cleavage50-52, it can be co-opted for transcriptional modulation by 

fusing a catalytically inactivated variant of the Cas9 nuclease (referred to as dCas9)53 with a 

transcriptional activator54-56 or repressor57 domain. Because the only major restriction for CRISPR/Cas9 

target site selection is the protospacer adjacent motif (PAM)50, which is recognized by the Cas9 protein 

and located immediately downstream of the sgRNA target site, CRISPR transcription activation 

systems54,55,58-62 have the potential for driving the expression of nearly any gene, including stimulating 

viral gene expression within latent HIV-1 reservoirs for shock-and-kill treatments. Importantly, unlike 

approaches that rely on the Cas9 nuclease to disrupt HIV-1 provirus, CRISPR-based activators pose no 

significant risk of introducing mutations within the host genome63 and have the added advantage of 

providing potentially reversible activity. 
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Here we demonstrate that CRISPR-based transcription activators can be configured to induce 

latent HIV-1 expression, and that combining these CRISPR tools with latency-reversing compounds can 

lead to robust activation of viral gene expression in cell-based models of HIV-1 latency. 

 

RESULTS 

CRISPR/Cas9 transcription activation systems induce gene activation from the HIV-1 LTR 

We have investigated whether CRISPR-based transcription factors can reverse latency by 

stimulating gene expression from the HIV-1 long terminal repeat (LTR) promoter64. The HIV-1 subtype 

B LTR is 634 bp in length and can be subdivided into three regions (Fig. 1a and Supplementary Fig. 

1): a 454-nucleotide (nt) segment upstream of the transcriptional start site (TSS) termed U3, which 

includes binding sites for host transcription factors that drive HIV-1 gene expression as well other cis-

acting DNA elements; a 96-nt repeat region downstream of the TSS referred to as R, which encodes the 

trans-activation response (TAR) element; and an 84-nt segment downstream of the R domain designated 

U5. 

We designed seven sgRNA to overlap with key features of the LTR (Fig. 1a,b). The U3 region 

was targeted by sgRNAs 1-5. sgRNAs 4 and 5, in particular, were designed to overlap with the binding 

sites for NF-κB and Sp-1, respectively, since these transcription factors contribute directly to viral gene 

expression and latency65-69. The R region, which encodes a repressive mRNA hairpin structure (TAR) 

that inhibits RNA pol II processivity70,71 in the absence of the viral Tat protein, was targeted by sgRNA 

6.  Finally, the U5 region was targeted by sgRNA 7. 

We initially evaluated the ability of two distinct CRISPR complexes to induce gene activation: 

(i) dCas9-VP6454,55 and (ii) the synergistic activation mediator (SAM) complex61. dCas9-VP64 

comprises dCas9 fused with a tetrameric repeat of the herpes simplex virus VP16 transactivation domain 

(VP64)72 (Fig. 1c). The SAM system similarly contains dCas9-VP64, but also: (a) a modified sgRNA 

harboring an aptamer that binds to the MS2 bacteriophage coat protein and (b) a tripartite fusion protein 
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consisting of the MS2 protein, the NF-κB trans-activating subunit p65, and the activation domain from 

the human heat-shock factor 1 protein (HSF1) (MS2–p65–HSF1) (Fig. 1c). Both complexes function by 

recruiting cellular transcription factors73 and chromatin-remodeling proteins73,74 to targeted genomic 

loci, leading to transcriptional activation. 

To assess the ability of each Cas9-based complex to stimulate gene expression, we co-transfected 

human embryonic kidney (HEK) 293T cells with either dCas9-VP64 or SAM, as well as a reporter 

plasmid containing the full-length HIV-1 subtype B promoter upstream of an EGFP reporter gene (Fig. 

1a). Both dCas9 complexes were tested with each of the seven individual sgRNAs, and the level of 

Cas9-mediated gene activation was directly correlated with EGFP fluorescence. We observed a minimal 

increase in EGFP expression in cells transfected with dCas9-VP64, with only sgRNA 3 yielding a 

significant increase (p < 0.05) in the number of EGFP positive cells (Fig. 1d). Surprisingly, “tiling” the 

LTR promoter with multiple sgRNAs, which has been shown to lead to increased activation of 

endogenous genes in HEK293T cells54,55, had minimal effect on EGFP expression in this transient 

reporter system (Supplementary Fig. 2). 

In contrast to the dCas9-VP64 complex, HEK293T cells co-transfected with reporter plasmid and 

the SAM system, showed a 12- to 24-fold increase in the number or percentage of EGFP positive cells, 

with the most robust levels of activation observed using sgRNAs 1, 2, and 3 (Fig. 1d). As previously 

reported61, no substantial increase in SAM-mediated activation was observed by tiling the promoter with 

multiple sgRNAs (Supplementary Fig. 3). As a control for target specificity, we evaluated EGFP 

expression in cells co-transfected with reporter plasmid and SAM encoding a random sgRNA library. 

No significant increase in EGFP was observed in transfected cells (Supplementary Fig. 4), indicating 

that SAM induced specific activation from the HIV-1 LTR promoter. 
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Reactivation of latent HIV expression by CRISPR activator complexes 

 We next evaluated whether SAM could reactivate viral gene expression in established cell line 

models of HIV-1 latency. Specifically, we sequentially infected the Jurkat-derived lymphocytic cell 

lines J-Lat 9.2 and J-Lat 10.675 with lentiviruses encoding each SAM element (Fig. 2a). J-Lat cells 

harbor an integrated but transcriptionally silent HIV-1 provirus that expresses GFP in lieu of the nef and 

env genes but still recapitulates the natural transcriptional complexity of the HIV promoter, thereby 

mimicking HIV latency. We specifically chose the J-Lat 9.2 and 10.6 cell lines since they display 

distinct gene activation thresholds arising from differences in chromatin accessibility at the HIV-1 

LTR76. Specifically, J-Lat 9.2 is a strongly repressed clone that requires high transcriptional induction to 

overcome its chromatin environment, whereas J-Lat 10.6 cells possess a lower activation threshold. 

We observed GFP expression in ~30% and ~5% of J-Lat 9.2 cells stably expressing SAM with 

sgRNAs 4 and 6, respectively (Fig. 2b). Additionally, we observed reactivation in up to 85% of J-Lat 

10.6 cells expressing SAM with sgRNA 6 (Fig. 2c). As an efficient positive induction control, we used 

tumor necrosis factor alpha (TNF-α), a proinflammatory cytokine that stimulates HIV expression 

through activation of NF-κB, but whose in vivo toxicity77 precludes its use as a therapeutic. TNF-α 

treatment yielded ~18% and ~82% GFP positive J-Lat 9.2 and 10.6 cells, respectively (Supplementary 

Fig. 5). Compared to an empty sgRNA cassette, each sgRNA we tested induced an increase (p < 0.05) in 

the number of GFP positive J-Lat 10.6 cells (Fig. 2c). However, only two sgRNA (4 and 6) induced a 

significant increase (p < 0.05 for both) in the number of GFP positive cells in the more repressed J-Lat 

9.2 cell line (Fig. 2b). Taken together, these data indicate that CRISPR/Cas9-based transcription 

activation systems delivered via lentivirus can stimulate latent HIV gene expression, but that differences 

in chromatin accessibility at the HIV-1 LTR can affect the ability of Cas9 to stimulate transcription. 
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Combining CRISPR activators with an HDAC inhibitor and prostratin synergistically increases 

latent HIV activation 

HDAC inhibitors, such as valproic acid78 or suberoylanilide hydroxamic acid (i.e., SAHA or 

Vorinostat),29 are capable of partially reversing the effects of chromatin silencing and alleviating HIV 

latency. We hypothesized that such compounds could also enhance the ability of Cas9 to induce HIV-1 

expression, particularly in repressive chromatin contexts. To this end, we treated J-Lat 9.2 and 10.6 cells 

stably expressing SAM with increasing doses of SAHA (Fig. 3a), a compound that inhibits the Class I 

HDAC isotypes 1, 2, 3, and 8. SAHA was recently shown to be safe and well tolerated in a Phase I 

clinical trial, though it was unable to provide a long-term increase in HIV-1 expression in patients28. 

Incubation of SAM-expressing J-Lat cells with SAHA led to a robust and dose-dependent 

increase in the number of GFP positive cells (Fig. 3b). Specifically, reactivation was evident in ~70% of 

J-Lat 9.2 cells with sgRNA 4, and ~80% of J-Lat 10.6 cells with sgRNAs 3, 5, 6, and 7 after treatment 

with 4 µM SAHA, substantially higher than control cells expressing an empty sgRNA expression 

cassette (Fig. 3b). Depending on the sgRNA used, high-doses of SAHA led to a 2- to 5-fold increase in 

activation in J-Lat 9.2 cells (Fig. 3b), indicating that CRISPR-based transcriptional modulators and 

HDAC inhibitors can act synergistically to reactivate HIV-1. 

We next investigated whether the use of multiple latency reversing compounds in combination 

with Cas9 could further increase HIV-1 expression. We treated J-Lat 9.2 and 10.6 cells expressing SAM 

with escalating doses of SAHA and 2 µM prostratin (Fig. 3a). The latter small molecule stimulates IKK-

dependent phosphorylation and degradation of Iκ-Bα79, leading to the rapid nuclear translocation of NF-

κB and activation of latent provirus18,19. Depending on the sgRNA used, SAM-expressing J-Lat 9.2 cells 

co-treated with SAHA plus prostratin showed a 2- to 3-fold increase in the number of GFP positive cells 

compared to those treated with SAHA only (Fig. 3c). Notably, sgRNAs 4 and 6 stimulated GFP 

expression in up to 80% of J-Lat 9.2 cells treated with SAHA and prostratin (Fig. 3c). J-Lat cells 
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expressing SAM and treated with prostratin in the absence of SAHA, however, showed less activation 

than those treated with both compounds (Supplementary Fig. 6).  

Interestingly, J-Lat 10.6 cells expressing SAM with sgRNA 4 – whose target site overlaps with 

the binding sites for NF-κB – showed a marked decrease in GFP positive cells after treatment with 

prostratin (Fig. 3c), indicating the possibility that SAM and NF-κB may be competing for LTR binding 

sites, and that this interplay led to suboptimal viral gene expression. Collectively, these results indicate 

that HIV latency reversing compounds can enhance the efficacy of Cas9-mediated activation of HIV-1, 

particularly in repressive chromatin contexts. 

 

Reactivation of latent HIV by epigenome editing using CRISPR/Cas9-based acetyltransferases 

Multiple mechanisms contribute to HIV latency, including repressive local chromatin effects 

stemming from histone deacetylation of the nucleosomes (nuc-0 and nuc-1) that form within the LTR80. 

While HDAC inhibitors such as SAHA can stimulate latent HIV expression by promoting an open 

chromatin environment around the provirus promoter, their activity can also influence the expression of 

host genes. In contrast, emerging epigenome-modifying technologies81 have the potential to directly 

alter the chromatin structure of the LTR and thereby affect target gene expression in a site-specific 

manner. For instance, fusion of dCas9 with the catalytic histone acetyltransferase core domain of the 

human E1A-associated protein p300 (dCas9-p300) was recently shown to facilitate transcriptional 

activation via targeted acetylation of histone H3 in the promoter region of targeted genes (Fig. 4a)82. We 

thus hypothesized that dCas9-p300 could also reactivate latent HIV-1 expression by acetylation of nuc-0 

or nuc-1. To examine this possibility, we evaluated GFP expression in J-Lat 10.6 cells nucleofected with 

expression vectors encoding dCas9-p300 and the aforementioned LTR-targeted sgRNAs. In particular, 

sgRNAs 1, 2, and 3 mediate binding near nuc-0, whereas the target sites for sgRNAs 6 and 7 overlap 

with nuc-1 (Fig. 1a). dCas9-p300 introduced into cells by nucleofection induced significant gene 

expression when targeted by sgRNAs 2, 4, 5, and 6 (p < 0.05 for each) (Fig. 4b), achieving levels of 
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activation comparable to each corresponding SAM complex (which were ~2-fold lower than by 

lentiviral-mediated expression, see Fig. 2). In the case of sgRNA 2, whose target site overlaps with nuc-

0, dCas9-p300 induced a significant increase (p < 0.05) in HIV-1 expression over SAM (Fig. 4b). Likely 

due to their more repressive transcriptional environment, no significant increase in activation was 

observed when J-Lat 9.2 cells were nucleofected with dCas9-p300 (data not shown). However, these 

findings collectively indicate that dCas9-p300 offers strong potential to stimulate transcription from the 

HIV-1 LTR. 

 

DISCUSSION 

The presence of residual latent but replication-competent HIV-1 reservoirs is a major hurdle 

impeding viral eradication. Recent work has indicated that HIV expression can be induced using zinc-

finger83 and TAL effector-based84 transcription factors engineered to bind the LTR promoter. Here we 

show that CRISPR/Cas9-based transcriptional effectors – which can be retargeted to nearly any DNA 

sequence without protein engineering – can reactivate viral gene expression in cell line models of HIV-1 

latency. Using LTR-targeted sgRNAs, we tested the ability of two distinct Cas9 complexes to stimulate 

transcription: dCas9-VP6454,55 and the synergistic activation mediator (SAM) complex61, which consists 

of dCas9-VP64 and an accessory transactivation domain designed to recruit a complementary suite of 

transcription and chromatin remodeling factors. We found that SAM activated gene expression from the 

LTR in transient reporter assays at levels that exceeded dCas9-VP64. This result is consistent with 

recent data indicating that, for some genes, first-generation dCas9-based transcription factors induce 

only modest levels of transcription53-57.  

While all seven LTR-targeted sgRNAs induced robust expression from the full-length LTR 

promoter in the context of transient reporter assays, they demonstrated variable activity when challenged 

with proviral DNA. Only sgRNAs 4 and 6, whose target sites overlap with the binding sites for NF-κB 

and the TAR element, induced significant changes in expression in J-Lat 9.2, with the latter possibly 
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through a mechanism that enhances transcriptional elongation. Despite the use of identical sgRNAs, 

different levels of Cas9-mediated activation were also observed between these cell lines (especially with 

sgRNA 4), suggesting that epigenetic and/or genetic85,86 factors can influence the ability of Cas9 to 

stimulate transcription. However, when combined with latency reversing compounds, such as SAHA 

and prostratin, SAM-induced HIV-1 transcription at levels that exceeded those observed using TNF-α 

simulation, particularly in J-Lat 9.2 cells. Interestingly, we observed reduced transcription in J-Lat 10.6 

cells expressing SAM with sgRNA 4 and treated with prostratin. Possible explanations for this include 

competition for LTR binding sites between Cas9 and prostratin-activated NF-κB, or an unforeseen 

inhibitory effect between endogenous NF-κB protein and the transactivation domains present in the 

SAM complex. 

The SAM system used here61 contains both the activation domain of the HSF1 protein and the 

NF-κB trans-activating subunit p65, which can stimulate transcriptional elongation during proviral 

activation87. This notwithstanding, we observed no increase in HIV activation in J-Lat cells expressing 

dCas9-VP64, MS2-p65-HSF1, and an empty sgRNA cassette, indicating that HIV-1 expression was due 

to sgRNA targeting to the LTR. The modularity of the tripartite MS2–p65–HSF1 fusion protein could be 

exploited in the future to create a Cas9 activator complex specifically tailored for CD4+ T cells or other 

cell types relevant to HIV latency. 

We also show that epigenome editing using a Cas9 acetyltransferase (dCas9-p300)82 can lead to 

a significant increase in GFP expression in J-Lat 10.6 cells. dCas9-p300-induced changes in 

transcription similar to SAM for multiple sgRNAs including sgRNA 2, which overlaps with a 

nucleosome (nuc-0) that contributes to proviral silencing. Because SAM and dCas9-p300 function 

through complementary mechanisms, emerging Cas9 orthologs88 could be co-opted and used in tandem 

for multiplexed induction of viral gene expression via epigenome editing and promoter-directed 

transcriptional activation. Future studies are necessary to determine the effectiveness of these 

technologies in primary cell models of HIV-1 latency, as well as the DNA-binding specificity of each 

Accepted m
anuscrip

t



ACCEPTED ARTICLE PREVIEW 

© 2015 The American Society of Gene & Cell Therapy. All rights reserved 

Cas9 activator89 and the exact epigenetic modifications induced by dCas9-p300. In addition, successful 

clinical translation of this approach necessitates the safe and effective delivery of CRISPR 

transcriptional activators into cells that harbor latent HIV-1. Neither SAM nor dCas9-p300 (~7.5 kb and 

~6.1 kb in length, respectively) can be packaged into a single adeno-associated virus vector. As an 

alternative, non-integrated lentiviruses could be used to facilitate their delivery ex vivo, as these vectors 

have enabled zinc-finger nuclease-mediated modification of the CCR5 gene in patient-derived resting 

CD4+ T cells.90 In vivo delivery of Cas9-sgRNA could prove challenging, however. The use of dCas9-

VP64 ribonucleoprotein91,92 conjugates engineered to specifically recognize93, and subsequently be 

internalized by CD4+ T cells, or emerging lentiviral vectors capable of infecting human lymphocytes 

upon systemic delivery94 could help to overcome this limitation. 

 Finally, as with RNA interference-based gene therapies for HIV-195,96, CRISPR-mediated 

transcriptional activation of HIV-1 could be vulnerable to viral escape, as recent work has indicated that 

even the latent reservoir can become populated with escape mutants97. However, due to the ease with 

which sgRNA can be designed, CRISPR-resistant strains of HIV-1 could be addressed through the use 

of new sgRNA tailored for specific escape mutants. These sgRNA could conceivably be introduced into 

cells already expressing a dCas9 variant via an aptamer-based bridge design similar to those previously 

described for combating HIV-1 resistance using RNAi98,99. The use of a CRISPR-based cocktail 

consisting of multiple sgRNA from the onset of treatment could also be used to help block HIV-1 

escape. 

 In summary, we show that CRISPR activation systems have the potential to induce HIV-1 

expression in cell-based models of latency. CRISPR systems, in combination with cART, may lead to 

new treatments for HIV-1 infection. 
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METHODS 

Plasmid construction 

pLV-dCas9-VP64-Blast (Addgene plasmid #61425), pLV-MS2-p65-HSF1-Hygro (Addgene 

plasmid #61426), and pLV-sgRNA(MS2)-Zeo (Addgene plasmid #61427)61 were gifts from Feng 

Zhang. pcDNA-dCas9-VP64 (Addgene plasmid #47107), pSP-sgRNA (Addgene plasmid #47108)54 and 

pcDNA-dCas9-p300 (Addgene plasmid #61357)82 were gifts from Charles A. Gersbach.  

Reporter plasmid encoding the HIV-1 subtype B LTR upstream of the EGFP gene (LTR-EGFP) 

was previously described13. Oligonucleotides encoding sgRNA target sites were custom ordered (Elim 

Biopharm), phosphorylated by T4 polynucleotide kinase (New England Biolabs), hybridized and ligated 

into the BbsI and BsmBI restriction sites of pSP-gRNA and pLV-sgRNA(MS2)-Zeo, respectively. 

Correct construction of each sgRNA was verified by sequence analysis. Oligonucleotides used in this 

study are shown in Supplementary Fig. 7. 

 

Cell culture 

 HEK293T and Jurkat cells were obtained from American Type Culture Collection (ATCC). J-Lat 

9.2 and J-Lat 10.6 cells were obtained from the National Institutes of Health (NIH) AIDS Reagent 

Program. HEK293T cells were maintained in Iscove's modified Dulbecco's medium (IMDM) 

supplemented with 10% (vol/vol) fetal bovine serum (FBS; Life Technologies) and 1% (vol/vol) 

antibiotic-antimycotic (Anti-Anti; Life Technologies) in a humidified 5% CO2 atmosphere at 37°C. 

Jurkat and J-Lat cells were maintained in RPMI 1640 medium (Life Technologies) supplemented with 

10% FBS and 1% Anti-Anti in a humidified 5% CO2 atmosphere at 37°C. 

 

Lentivirus production and infections 

HEK293T cells were seeded onto 10-cm plates at a density of 2 x 106 cells per plate in serum-

containing medium. At 24 h after seeding, cells were transfected with 10 µg of pLV-dCas9-VP64-Blast, 
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pLV-MS2-p65-HSF1-Hygro, or pLV-sgRNA(MS2)-Zeo, as well as 5 µg of pMDL g/p RRE, 3.5 µg of 

pMD2.G, and 1.5 µg of pRSV-Rev using polyethylenimine (PEI), as described100. At 48 h and 72 h after 

transfection, cell culture medium was harvested, concentrated by ultracentrifugation (L8-55M 

Ultracentrifuge; Beckman Coulter), and resuspended in 200 µl of PBS with 20% sucrose. Lentivirus was 

stored in single-use aliquots at -80° C. 

For infections, J-Lat 9.2 and 10.6 cells were seeded onto 24-well plates at a density of 2 x 105 

cells per well in serum-containing medium. Lentiviral infections were performed sequentially. At 24 h 

after seeding, cells were infected with either LV-dCas9-VP64-Blast, LV-MS2-p65-Hygro, or LV-

sgRNA(MS2)-Zeo using a multiplicity of infection (MOI) of 0.1. After 1 week, infected cells were 

selected with either 10 µg/ml of blasticidin (Sigma) for LV-dCas9-VP64-Blast, 1 mg/ml of hygromycin 

(Sigma) for LV-MS2-p65-Hygro, or 100 µg/ml of zeocin (Sigma) for LV-sgRNA(MS2)-Zeo. Each 

selection was performed for 1 week. Seven days after the final selection, cells were washed once with 

PBS, and GFP expression was evaluated by flow cytometry (BD LSR Fortessa X-20; BD Biosciences). 

For each sample, 10,000 live events were collected, and data were analyzed using FlowJo (Tree Star, 

Inc.). 

For small molecule treatments, ten days after the final selection, J-Lat cells expressing the SAM 

complex were seeded into a 96-well plate at a density of 4 x 104 cells per well with 0.5, 1.0, 2.0, or 4.0 

µM SAHA (Sigma) in the presence of absence of 2.0 µM prostratin (Sigma). At 24 h after treatment, 

cells were harvested, and EGFP expression was measured by flow cytometry. For each sample, 10,000 

live events were collected, and data were analyzed using FlowJo. 

 

Transient transfections  

HEK293T cells were seeded into 96-well plates at a density of 4 x 104 cells per well in serum-

containing medium. For SAM, at 16-24 h after seeding, cells were transfected with 20 ng of LTR-EGFP, 

60 ng of pLV-dCas9-VP64-Blast, 60 ng of pLV-MS2-p65-HSF1-Hygro, and 60 ng of pLV-
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sgRNA(MS2)-Zeo using PEI. For dCas9-VP64 transfections, at 16-24 h after seeding, cells were 

transfected with 20 ng of LTR-EGFP, 90 ng of pcDNA-dCas9-VP64, and 90 ng of pSP-sgRNA using 

PEI. Transfection efficiency was measured to be >90%. 

For nucleofections, J-Lat cells were seeded into a T-25 cell culture flask at a density of 1 x 105 

cells per ml. For SAM, at 24 h after seeding, 2 x 105 cells per nucleofection were centrifuged at 90 x g 

for 10 min at room temperature and resuspended in Nucleofector Solution SE (Lonza) with 650 ng of 

pLV-dCas9-VP64-Blast, 650 ng of pLV-MS2-p65-HSF1-Hygro, 650 ng of pLV-sgRNA(MS2)-Zeo, and 

40 ng of pEntry-CMV-puro-mTagBFP, which was used as a transfection control. For dCas9-p300, 2 x 

105 cells per nucleofection were resuspended in Nucleofector Solution SE with 1 µg of pcDNA-dCas9-

p300 Core, 1 µg of pSP-sgRNA, and 40 ng of pEntry-CMV-puro-mTagBF. Cells were transferred to a 

16-well Nucleocuvette Strip (Lonza) and electroporated using the 96-well Shuttle Device (Lonza) with 

the program CL-120, according to the manufacturer’s instructions. Transfection efficiency was 

measured to be ~20%. 

At 48 h after nucleofection, cells were washed once with PBS, and GFP expression was 

evaluated by flow cytometry. For each sample, 10,000 live events were collected, and data were 

analyzed using FlowJo. 

 

Statistical analysis 

Data represents the mean (data points) and standard deviation (error bars) of three independent 

replicates. Statistical significance was calculated using a one-tailed independent two-sample Student’s t-

test (Microsoft Excel 2013).   
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FIGURE LEGENDS 

Fig. 1. CRISPR transcriptional activators induce gene expression from the HIV-1 LTR (a) 

Schematic of the EGFP reporter system used to evaluate Cas9-mediated gene activation and the 

architecture of the HIV-1 subtype B long terminal repeat (LTR) promoter. Grey circles indicate 

approximate locations of nucleosome-0 (nuc-0) and nuc-1 in the LTR. Red triangles indicate location of 

the sgRNA target site. Black arrow denotes the transcriptional start site (TSS). Yellow squares and 

orange circles indicate NF-κB and Sp-1 binding sites, respectively (b) sgRNA target sites from the LTR. 

PAM highlighted blue. (c) Cartoon illustrating the potential modes of transcriptional activation by 

dCas9-VP64 and SAM. Black arrows indicate VP64- and MS2-p65-HSF1-mediated recruitment of 

cellular transcription factors and the chromatin-remodeling proteins. (d) Fold-increase in the percentage 

of EGFP positive HEK293T cells after transfection with EGFP reporter plasmid and expression vectors-

encoding dCas9-VP64 with sgRNA (blue) or SAM with sgRNA (red). EGFP expression was normalized 

to cells transfected with reporter plasmid, dCas9-VP64 and an empty sgRNA expression cassette. EGFP 

expression was measured 48 h after transfection, and was observed in 0.5 ± 0.6% of negative control 

cells. Error bars indicate s.d. (n = 3; *p-value < 0.005; **p-value < 0.001; ***p-value < 0.0001; 

Student’s t-test). 

 

Fig. 2. SAM-mediated activation of latent HIV-1 expression in cell line models of latency (a) 

Diagram of the HIV-1 proviral genome in J-Lat cells. Grey boxes indicate genes whose expression has 

been disabled. (b and c) Percentage of GFP positive (b) J-Lat 9.2 and (c) J-Lat 10.6 cells stably 

expressing SAM with sgRNA. “Empty” indicates J-Lat cells expressing SAM with an empty sgRNA 

expression cassette. Dotted line indicates the percentage of naïve GFP positive (b) J-Lat 9.2 and (c) J-

Lat 10.6 cells after treatment with 20 ng/µL tumor necrosis factor α (TNF-α). GFP fluorescence was 
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measured 14 days after final infection. Error bars indicate s.d. (n = 3; **p-value < 0.001; ***p-value < 

0.0001; Student’s t-test). 

 

Fig. 3. SAHA and prostratin enhance SAM-mediated activation of latent HIV-1 expression (a) 

Schematic illustrating experimental setup. Naïve or SAM-expressing J-Lat cells were treated with 

SAHA alone or in the presence of prostratin. (b and c) Percentage of GFP positive J-Lat 9.2 (upper) and 

J-Lat 10.6 (lower) cells stably expressing SAM and treated with (b) increasing amounts of SAHA only 

or (c) increasing amounts of SAHA with 2 µM prostratin. “Empty” indicates J-Lat cells expressing SAM 

with an empty sgRNA expression cassette. Dotted line indicates the percentage of naïve GFP positive J-

Lat cells after treatment with 20 ng/µL of TNF-α. Cells were treated 17 days after final infection, and 

GFP expression was measured 24 h after treatment. Error bars indicate standard deviation (n = 3). 

 

Fig. 4. Reactivation of latent HIV-1 expression using CRISPR-based acetyltransferases (a) Cartoon 

illustrating the potential mode of action by a CRISPR-based acetyltransferase (dCas9-p300) on the HIV 

LTR. Grey circles indicate approximate locations of nuc-0 and nuc-1 in the LTR (b) Fold-increase in the 

percentage of GFP positive J-Lat 10.6 cells after nucleofection with SAM and sgRNA (dark blue) or 

dCas9-p300 with sgRNA (teal). Data were normalized to J-Lat 10.6 cells nucleofected with SAM or 

dCas9-p300 and an empty sgRNA expression cassette. GFP fluorescence was measured 48 h after 

nucleofection. Error bars indicate standard deviation (n = 3; *** p-value < 0.0001; Student’s t-test). 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 

 


