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Abstract: Stem cells have the capability to self-renew and maintain their undifferentiated state or to differentiate
into one or more specialised cell types. Stem cell expansion and manipulation ex vivo is a promising approach for
engineering cell replacement therapies, and endogenous stem cells represent potential drugable targets for tissue
repair. Before we can harness stem cells’ therapeutic potential, we must first understand the intracellular
mechanisms controlling their fate choices. These mechanisms involve complex signal transduction and gene
regulation networks that feature, for example, intricate feed-forward loops, feedback loops and cross-talk
between multiple signalling pathways. Systems biology applies computational and experimental approaches to
investigate the emergent behaviour of collections of molecules and strives to explain how these numerous
components interact to regulate molecular, cellular and organismal behaviour. Here we review systems
biology, and in particular computational, efforts to understand the intracellular mechanisms of stem cell fate
choice. We first discuss deterministic and stochastic models that synthesise molecular knowledge into
mathematical formalism, enable simulation of important system behaviours and stimulate further
experimentation. In addition, statistical analyses such as Bayesian networks and principal components analysis
(PCA)/partial least squares (PLS) regression can distill large datasets into more readily managed networks and
principal components that provide insights into the critical aspects and components of regulatory networks.
Collectively, integrating modelling with experimentation has strong potential for enabling a deeper
understanding of stem cell fate choice and thereby aiding the development of therapies to harness stem cells’
therapeutic potential.
1 Introduction
Stem cells – first discovered in mouse bone marrow by
Becker et al. [1] and Till and McCulloch [2] – are defined
by their two hallmark properties: (i) self-renewal, or
extended maintenance and potentially proliferation in an
undifferentiated state, and (ii) differentiation into one or
more specialised cell types. Pluripotent embryonic stem
(ES) cells can give rise to any cell type in an adult
organism, whereas multipotent adult stem cells are capable
of generating a more limited set of cell types, typically ones
in the tissue in which stem cells reside. Their ability
to self-renew or differentiate into multiple cell types
makes stem cells promising therapeutic candidates in cell
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replacement therapies for multiple injuries and diseases,
including diabetes [3], spinal cord injury [4] and
Alzheimer’s disease [5], among others. However, before we
can harness stem cells’ therapeutic potential and guide their
production of a desired cell type, we must first identify the
factors and understand the mechanisms that govern their
behaviour and fate choices.

Whether in a multi-cellular organism or a culture dish, a
stem cell constantly receives environmental cues in many
forms: soluble cues from proteins such as mitogens and
cytokines [6–9], small molecules [10, 11], and nutrients
[12, 13], as well as ‘solid phase’ cues such as cell–cell
contacts and the biochemical and mechanical properties of
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the extracellular matrix, including signals immobilised to it
[14–17]. These signals guide the stem cell towards specific
behaviours, such as survival, apoptosis, self-renewal or
differentiation into one of multiple lineages (Fig. 1). An
instructive view of stem cell fate choice states that
environmental cues initiate the intracellular signals that
direct the cells to their fate, whereas a selective mechanism
indicates that environmental factors merely support the
survival of certain fates. It appears likely that both of these
modes operate in different tissues and circumstances [18].
Regardless of which mechanism is operating, however,
stem cell behaviour is guided by molecular interactions and
reactions involving receptors, signalling networks and
transcription factors. In particular, signal processing
networks that relay input signals from the cell surface to
the nucleus feature complex, non-linear components such
as feed-forward and feedback loops, signal amplification
cascades and cross-talk between multiple signalling
pathways. Information processing continues within the
nucleus where transcription factor networks control
the expression of themselves and each other, in addition to
the target genes required for execution of fate choice. The
result is a complex, multi-level, non-linear system that can
exhibit a number of rich behaviours, including switches and
The Institution of Engineering and Technology 2009
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oscillations [19–22]. These behaviours are critical
regulators of stem cell self-renewal and differentiation, and
in many ways they are difficult to investigate and interpret
intuitively without the aid of systems-level analysis and the
accompanying mathematical tools. A topic closely related to
stem cell fate choice, organismal development, is also
studied by systems biologists. However, we will focus on
the molecular mechanisms of fate choice within single cells
and refer readers to an excellent review of models of multi-
cellular pattern formation [23].

Systems biology is a field that studies the collective
behaviour of groups of complex, interacting biological
components. Its approaches offer advantages that
complement and enhance traditional reductionist
experimental avenues that tend to focus more on individual
components than on interactions occurring within a larger
scale system. Systems biology analyses of large biological
systems such as cells often rely on computational models,
which serve many uses: (i) they summarise our knowledge
of and assumptions about a system into formal,
mathematical statements; (ii) they highlight gaps in our
knowledge of a system; (iii) they generate hypotheses about
the behaviour of the system that motivate experimentation
Figure 1 A stem cell as a signal processor

A stem cell receives multiple signals from its environment: soluble factors such as mitogens, cytokines, and nutrients; the biochemical and
mechanical properties of the extra cellular matrix; and contacts from neighbouring cells. The cell processes these signals to determine its
fate: self-renewal, survival, apoptosis, or differentiation
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and further modelling; (iv) they aid in the analysis of
large datasets – such as those generated by genomic,
transcriptomic, proteomic and kinomic experimentation –
and thus summarise the data and highlight important,
potentially unintuitive behaviour for future experimentation
[24–27], and (v) they highlight critical loci within a system
that can be manipulated to generate a desired outcome. As
examples of the last point, a model can be used to pinpoint
drugable therapeutic targets that direct endogenous stem
cell pools to a desired fate or to enable the design of
strategies to optimise ex vivo expansion for cellular therapy
[28, 29].

In this review, we discuss systems biology modelling
approaches and techniques that are increasingly utilised to
understand the intracellular mechanisms of stem cell fate
choice. Deterministic and stochastic computational models
have formally synthesised our molecular knowledge into
mathematical statements, furthered our understanding of
important network behaviours and motivated future
experimentation. Statistical analyses such as Bayesian
networks and principal components analysis (PCA) have
distilled large datasets into tractable candidate networks
and principal components that are then used to derive
insight into the critical pieces of the fate choice network.
Collectively, these efforts have furthered the stem cell field
and brought us closer to the eventual goal of harnessing the
therapeutic promise of stem cells.

2 Deterministic models
A deterministic model, one that always yields the same result
given the same set of initial conditions, often consists of a set
of either ordinary differential equations (ODEs) or partial
differential equations (PDEs) that typically model the mass
action of molecular species. ODEs are used in situations
where the system (i.e. the intracellular or extracellular region) is
spatially homogeneous. This assumption can be relaxed
somewhat by compartmentalising the system into several
homogeneous sub-systems with transport between them.
PDEs are used when spatial heterogeneity in species
concentrations or other dependent variables becomes more
complex and must be captured in order to accurately model
the system. These ODE- or PDE-based models can be
analysed at steady state or dynamically, yielding either algebraic
equations or spatially dependent PDEs/ODEs, respectively.

Deterministic models are often used to simulate the
intracellular chemical reactions and interactions regulating
stem cell fate choice, including ligand–receptor dynamics,
signal transduction pathways and transcription factor
networks. To do so, the modeller must have a precise
understanding of these constituent molecular interactions
within the network and knowledge of their rate and
binding constants. The latter in particular is often limiting,
as in many systems there is a dearth of experimentally
measured constants, often requiring estimation of constants
based on analogous systems.
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Models are most often solved numerically, and the
resulting output is kinetic information about the quantities
of network species as a function of time and/or at steady
state. This enables an investigation of how different
parameters that describe molecular interactions (e.g.
binding or catalysis) affect system behaviour, driving the
formation of new hypotheses. Additionally, models may be
used to identify sensitive loci within the network, that is,
locations where small perturbations can exert a strong effect
on cell behaviour. These could represent ‘drugable targets’
for therapeutic intervention or failure points where natural
mutations may adversely affect system function and lead to
disease.

In an early effort to quantitatively understand the molecular
basis for stem cell fate choice, a ligand–receptor signalling
threshold (LIST) model was proposed [30, 31]. This model
posited that a threshold level of ligand–receptor signalling is
an important determinant of stem cell fate and was useful
in predicting cellular responses to various cytokine
concentrations. It even demonstrated that a cytokine’s ability
to maintain pluripotent ES cells was dependent on its
receptor binding properties, such as heterodimerisation
instead of homodimerisation. The intracellular signal
transduction and gene regulation processes, however, were
not treated within the scope of this model.

Several papers have used deterministic models to
mathematically investigate the role of intracellular signal
transduction and transcription factor networks in stem cell
fate choice. One behaviour that emerges is network
bistability, where as an input parameter is continuously
varied, the system output transitions between one, then
two, then one stable steady state solution (Fig. 2). The two
bifurcation points, where the number of stable solutions
transitions between one and two, represent quantitative
input threshold levels where the system qualitatively
switches state. Bifurcation thus serves as an analogue-to-
digital converter to translate a graded input signal into an
unambiguous, ‘all or nothing’ behavioural response (e.g.
self-renewal instead of differentiation). The behaviour also
serves a second important function. As discussed below
(stochastic models), noise is a feature of many biological
systems and bistable systems exhibit hysteresis, where for
example, the input level at which the system switches from
the first to the second state is higher than that at which it
flips back from the second to the first (Fig. 2). Hysteresis
thus filters the noise within a system to prevent potentially
deleterious rapid switching between states that would
otherwise result from noise in the input parameter or
signal. The initial example of such behaviour in a stem cell
regulatory network was the Sonic hedgehog (Shh)
signalling system [19]. Shh, which patterns tissues during
development and is an important mitogen for adult neural
stem cells [6], drives expression of the transcription factor
Gli1, which positively regulates its own transcription.
Furthermore, Gli1 upregulates the expression of Patched,
a repressor of Shh signalling. This nested positive and
3
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negative feedback renders an intuitive understanding of the
pathway behaviour difficult, and a Shh network model
found that Gli1 expression exhibits bistability as a function
of the input Shh concentration [19]. This outcome
demonstrates one possible mechanism by which stem cells
commit to a specific fate, that is, once Shh concentration
exceeds a threshold, and Gli1 expression switches to a
‘high’ state, a moderate decrease in Shh will not return
Gli1 expression to the ‘low’ state.

Several additional efforts have modelled transcription
factor networks that exhibit bistability [20, 21].
Chickarmane et al. [20] modelled the interplay between
three canonical pluripotency transcription factors crucial for
ES cell self-renewal: Oct4, Sox2 and Nanog. Each of these
genes positively regulates the expression of the others in
addition to itself, as well as downstream target genes that
either maintain pluripotency or induce differentiation [32–
34]. This network gives rise to bistable expression of Oct4,
Sox2 and Nanog, leading to a plausible mechanistic
explanation for pluripotency maintenance. Since the
publication of this work, however, other work has
discovered additional transcription factors that play a role in
maintaining pluripotency [35]. Future investigations of this
updated network should prove interesting.

One genetic switch in hematopoietic stem cells involves
the transcription factors GATA-1 and PU.1. Low GATA-
1 and PU.1 expression maintain the cell in an
undifferentiated state, whereas dominant expression of
GATA-1 promotes the erythroid/magakaryocyte lineage,
and PU.1 promotes the myeloid lineage. GATA-1 and
PU.1 both stimulate their own transcription and inhibit
that of the other, resulting in a network that generates a
bistable, genetic toggle switch [21]. Huang et al. [36]
examined the same GATA-1/PU.1 system to determine

Figure 2 Bistability acts as a cell fate switch

In a bistable system, a range of input values generates two stable
output solutions (the bistable region). When the input value
increases to the bifurcation point the system switches state and
‘jumps’ to the upper portion of the curve. That is, the system
converts the analogue input signal to a digital output (i.e. fate
choice). Once the system has switched states, hysteresis allows
it to robustly resist the effects of input noise (represented by
dashed double arrow). The system is unable to ‘jump’ back to
the lower curve unless the input signal decreases below the
bistable region
The Institution of Engineering and Technology 2009
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how a cell transitions from a progenitor state to one of the
two possible differentiated progeny. They used a simple
model of the GATA-1/PU.1 network, consisting of two
ODEs, to generate what they termed an ‘attractor’
landscape, which is loosely analogous to a potential
landscape where the stable cell states (progenitors or their
differentiated progeny) reside in alternate ‘wells’. Using this
model, they could investigate how the shape of this
landscape varies with levels of transcription factor auto-
stimulation, cross-inhibition and decay. They then analysed
possible mechanisms by which the landscape could be
altered by the changes in transcription factor expression
and activity that are triggered by differentiation signals.
They found that the paradigm that resulted in the best
match between the model results and experimental
measurements of mRNA levels was one in which a
differentiation signal altered the transcription factor
landscape such that the ‘progenitor point’ was no longer in
a valley but rather on a peak. This rendered the progenitor
state unstable and forced the cell into a stable differentiated
state. The authors found that this landscape shift could be
accomplished by a reduction in transcription factor auto-
stimulation, an increase in transcription factor decay, or both.

In addition to bistability, recent work has shown that
network oscillations may also play a role in stem cell fate
choice, specifically in the maintenance of adult neural stem
cells by Notch signalling [22] Activation of the Notch
pathway stimulates expression of the Hes family of
transcription factors, which then inhibit their own
transcription. This pathway can act as a switch that is
important for developmental pattern formation [37, 38] or
as an oscillator [39, 40] that is important for stem cell
maintenance [22]. We have recently developed a single
mathematical model that demonstrates that the Notch
network can operate as a switch or an oscillator depending
on the value of one key parameter. Specifically, tuning a
single factor – the extent to which Hes1 binding reduces
its expression – causes the network to transition between
functioning as a bistable switch and an oscillator [41].

There have been additional efforts to mathematically
model common signalling pathways downstream of key
growth factors and cytokines [42, 43]. These include the
effects of neurotrophin-3 (NT-3) on the MAPK pathway
in ES cell-derived neural progenitors. The results provided
insight into threshold levels of NT-3 stimulation and
MAPK activity required for neuronal differentiation [42].
A similar study quantitatively studied the intracellular
response to the cytokine leukemia inhibitory factor (LIF),
which is crucial for murine ES cell self-renewal. This work
uncovered a likely positive feedback loop that stimulated
production of components of the LIF signalling pathway
during LIF signalling; however, removal of LIF causes
lower expression of LIF signalling factors, thereby
decreasing the cell’s overall sensitivity to LIF. The authors
demonstrated that this desensitisation was a precursor to
differentiation and loss of ES cell markers [43].
IET Syst. Biol., 2010, Vol. 4, Iss. 1, pp. 1–11
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Furthermore, a systems-level analysis of stem cell fate
choice can highlight potentially non-intuitive therapeutic
targets for stem cell control and enable optimisation of ex
vivo stem cell production (as reviewed [28]). Zandstra and
colleagues [29] developed a mass action model of the JAK/
STAT3 pathway, which stimulates murine ES cell self-
renewal. Upon binding of LIF to the LIF receptor (LIFR)
and glycoprotein-130 (gp130), the resulting receptor
complex triggers signalling and leads to phosphorylation
and activation of the transcription factor STAT3. The
authors experimentally verified the prediction that gp130
overexpression actually decreases STAT3 activation, because
the excess gp130 binds and sequesters LIFR into non-
signalling heterodimers. Additionally, a sensitivity analysis
predicted and experimental results confirmed the additive
importance of two individually ‘innocuous’ parameters
(STAT3 nuclear export rate and JAK-mediated receptor
activation rate), demonstrating the utility of such a model
in generating novel hypotheses and potential therapeutic
interventions. Finally, as predicted by the model, continual
LIF stimulation causes desensitisation to ligand
stimulation. The model enabled the design and
experimental validation of a LIF addition protocol to
maximise STAT3 phosphorylation, representing a useful
application of a model for maximising ex vivo production
of pluripotent ES cells for potential therapeutic use.

Deterministic models of the intracellular mechanisms of
stem cell fate choice aid in interpreting complex network
interactions, highlight new research avenues and potential
therapeutic interventions and can potentially be applied to
improve process development efforts for ex vivo cell
production. However, detailed knowledge of the signal
transduction and transcription factor networks of interest is
required, including quantitative knowledge of the kinetic and
equilibrium constants involved. A further limitation of these
models is their failure to account for the ‘noisy’ behaviour
that can arise in biological systems because of slow chemical
reactions and/or small numbers of molecules, and the next
section focuses on efforts to take these effects into account
when modelling stem cell fate choice.

3 Stochastic models
Ever since stem cells were first discovered in the hematopoietic
system, researchers have been studying the role of stochastics in
stem cell fate choice [44–46]. When investigating the
intracellular mechanisms governing stem cell fate, stochastics
become important when the regulatory networks involve
slow biochemical reactions and/or a small number of
constituent molecules (e.g. transcripts, proteins, second
messengers etc.) within a cell. Since landmark theoretical
work by McAdams and Arkin [47] sparked interest in
stochastic effects in gene expression, a considerable amount
of work has focused on the implications of noise in multiple
biological processes (see review [48]), including phage
infection [49], Bacillus subtilis stress response mechanisms
T Syst. Biol., 2010, Vol. 4, Iss. 1, pp. 1–11
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[50], circadian rhythm control [51], lymphocyte activation
[52] and others [53]. Stochastic effects are sometimes able
to explain phenomena not predicted by deterministic
models. In fact, some work indicates that precise circadian
rhythms are actually dependent on noise [51]. Furthermore,
a stochastic model based on T cell antigen response has
described situations where a bimodal output is observed,
whereas a deterministic model predicts only a single,
intermediate solution [54].

To date, very little work has investigated stochasticity in
intracellular stem cell signalling pathways. As mentioned
above, our model of the Shh signalling system predicts that
expression of the transcription factor Gli1 exhibits
deterministic bistability as a function of an input Shh
signal. We also implemented stochastic simulations to
show that stochastic effects near bifurcation points can lead
to random switching between states, undermining
deterministic switch-like behaviour in the network (similar
to subsequent observations in other systems [55]).
However, in the Shh network, the effects of noise are
moderated by the Gli1-driven expression of the Shh
repressor Patched. Specifically, whereas positive feedback
amplifies noise, this negative feedback loop functions to
dampen noise, resulting a robust switch that reliably directs
stem cell fate despite inherent stochastic effects [19].

There is also experimental evidence that stochastics may be
important in networks that control stem cell behaviour.
Recent studies show that populations of stem cells can exist
in multiple metastable states, and that cells within the
population are capable of switching between these states
(reviewed in [56]). For instance, in one study approximately
80% of murine ES cultures expressed the transcription
factor Nanog. This observation could be readily explained if
the other 20% were differentiated; however, this same 80/
20 distribution is re-established when high or low marker
populations are separated and cultured in isolation.
Furthermore, ES cells with high Nanog expression are less
likely to differentiate than low Nanog expressers, indicating
that the system is more complex than simple bimodal
Nanog expression [57]. Similar switches are observed in
hematopoietic stem cells where the surface marker Sca-1 is
expressed in a broad distribution. Analogous to Nanog
expression in ES cells, after being separated by flow
cytometry, high or low Sca-1 expressing populations re-
establish the original distribution within several population
doublings. Additionally, low Sca-1 expressing cells
preferentially differentiate into the erythroid lineage,
whereas high Sca-1 expressers favor the myeloid lineage
[58]. The mechanistic basis of these switches is not yet
understood, but a mathematical model involving stochastic
state transitions between multiple stable states indicates
that stochastic gene expression likely plays a role [58].
Elucidating the true nature of these noisy transitions and
their effects on fate choice will require further studies that
utilise a systems-level approach to complement
experimental investigations.
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4 Bayesian networks
The above approaches to understanding stem cell fate choice
are applicable when the signalling network of interest is
relatively well understood (such as Shh or JAK/STAT3
signalling). However, in many situations, the underlying
molecular interactions are not yet well characterised or in
large part unknown, but systems biology approaches can
potentially help elucidate such unknown networks through
the analysis of large datasets. One such technique is
Bayesian network analysis (for mathematical details, see
recent reviews [59, 60]), which can help reverse engineer
signal transduction cascades from an ‘ 2omic’ dataset
(proteomic, transcriptomic, kinomic etc.) and deduce
candidate causal relationships between measured variables
or quantities. The result is a graphical map of probable
interactions, which provides a physical/biochemical
interpretation of the dataset and aids in the formulation of
hypotheses for future experimentation. The network
analysis is probabilistic in that it treats each measurement
(i.e. mRNA concentration, protein phophorylation level
etc.) as an uncertain estimate and therefore incorporates
measurement noise in a systematic way. It is important to
note that connections between species represent a causal
but not necessarily a direct biochemical relationship, that is,
two connected species may not have a direct physical
interaction but may instead be separated by several
intermediate steps. Whether the analysis detects these
intermediate steps is dependent on the quality, size and
detail of the dataset being analysed. Another limitation of a
Bayesian network is that it does not provide information on
the stepwise progression of the interactions. Rather, it
predicts the likelihood of finding a species in a particular
state given the states of the surrounding species. Finally,
although a traditional requirement is that Bayesian network
structures are acyclic and are therefore unable to capture
feedback, recent work has developed a new technique to
circumvent this requirement and recover feedback loops
within a signal cascade [61, 62].

Bayesian networks have been used to predict microRNA
targets [63], regulatory relationships between genes [64],
and the effects of single nucleotide polymorphisms on the
clinical outcome of sickle cell anemia [65]; however,
comparatively little work has utilised Bayesian networks for
the analysis of stem cell fate control. A Bayesian network
model has been used to analyse a large proteomic dataset
from mouse ES cells containing measurements of the
phosphorylation states of several signalling molecules under
multiple cytokine and extracellular matrix conditions [24].
The resulting model provided good agreement with several
previously described stem cell signalling pathways despite
the complete lack of a priori assumptions regarding these
signalling systems, including the LIF/JAK/STAT3
pathway and the MAPK/ERK pathway. Additionally, the
model predicted several novel links. For instance, the rate
of conversion from undifferentiated to differentiated cells
was found to be most dependent on the phosphorylation
The Institution of Engineering and Technology 2009
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states of Adducin a and ERK2. Furthermore, the model
predicted that Raf1 and PKC1 would exert an effect on
differentiated cell growth. The authors went on to
experimentally verify these results, demonstrating that
Bayesian networks can provide useful insights into the
complex biological processes underlying stem cell fate
choice. However, the authors caution that care must be
taken when implementing these models, because, like many
other analyses, the output results depend strongly on the
quality and breadth of input data [24]. For instance, the
analysis predicted that the rate of undifferentiated cell
proliferation depended on the cytokine LIF without
depicting any intermediate steps, when in reality there are
numerous molecular intermediates that were not measured
in the original dataset.

As large datasets needed for meaningful model predictions
– which are resource- and time-intensive to generate –
become increasingly available, Bayesian network analysis
may become more utilised in the stem cell field to make
novel predictions and drive new hypotheses regarding the
signalling events that control stem cell fate.

5 Principal components analysis
and partial least squares regression
Other techniques to analyse large datasets include PCA and
partial least squares (PLS) regression (reviewed in [66]). Each
measured quantity within a dataset (e.g. phophoprotein and/
or transcription factor concentrations) can be depicted as an
axis within ‘signalling space’ – analogous to how time and
concentration are typically the x- and y-axes when graphing
data. The resulting data space can have dozens (perhaps
hundreds) of axes or dimensions, one for each measured
quantity. PCA reduces this large number of dimensions to
a few new axes called principal components. Each principal
component represents a combination of the original
signalling axes that have high covariance with one other.
This reduces the data space to just a few tractable
dimensions, allowing the researcher to more easily search
for trends within the data. PLS is an extension of PCA
that generates a predictive relationship between independent
and dependent principal components.

PCA has found uses in many biological applications,
including analysing neuronal decision-making processes
[67], microarray data [68], libraries of chemical inhibitors
[69] and signal transduction pathways [70], in addition to
stem cell fate choice [25, 26]. As one example, Sharov
et al. [25] amassed a large collection (nearly 250 000) of
expressed sequence tags (ESTs) from public and other
sources to produce a database of the mouse transcriptome.
They then analysed this database for differences in EST
frequency between cell types of varying potency. PCA
identified a principal component that effectively represented
a cell’s developmental potential, from totipotent oocytes to
fully differentiated newborn tissues. The expression levels
IET Syst. Biol., 2010, Vol. 4, Iss. 1, pp. 1–11
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of a set of 88 genes were closely associated with this principal
component axis. All 88 genes followed a general trend of
decreased expression with increased differentiation. Similar
work analysed global gene expression changes during
neuronal differentiation [26]. This analysis – which
included ES cells, adult neural stem cells and neurons –
identified a principal component axis composed of several
genes that described the cell’s level of neuronal
commitment. It seems likely that similar axes will be found
for other tissues, and the genes associated with these
principal components are potential targets of research into
the molecular mechanisms of differentiation.

PLS, a predictive extension of PCA, only recently found
use in biological research when it was first used as a
predictor of apoptosis resulting from various molecular
perturbations [71, 72]. It has since been used to generate a
protein signature consistent with metastatic breast cancer
[73] and to investigate the migration and proliferation of
mammary epithelial cells [74]. Recently, PLS regression
has been used to demonstrate that multiple cell types
process upstream kinase signals through a similar ‘effector-
processing’ system to generate cell-specific responses to the
same extracellular stimulus [75]. PLS was also used to
analyse murine ES cell fate choice [27]. Using results from
the same dataset as Woolf et al. [24] (see Bayesian
networks above), which included phospho-protein
measurements from multiple signalling pathways under
multiple culture conditions, they correlated phosphorylation
state to ES cell differentiation and self-renewal. The
analysis revealed a set of seven signalling molecules closely
associated with ES cell fate choice, including PKC1.
IET Syst. Biol., 2010, Vol. 4, Iss. 1, pp. 1–11
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Additionally, the PLS-generated model predicted that
PKC1 inhibition would slow the proliferation of
differentiated cells. To test this prediction, the authors
experimentally inhibited PKC1 activity and found that it
did indeed inhibit proliferation in differentiated cells with
little effect on undifferentiated cells. This effect of PKC1

inhibition was potentially moderate, however, because it
involved blocking only one component of a much larger
network. At any rate, this work successfully utilised systems
biology to highlight key contributors to ES cell
differentiation and self-renewal, and similar analyses may in
the future determine whether the same signalling molecules
play the same roles in other stem cell types and aid the
development of ex vivo expansion technologies and
therapeutic strategies.

6 Summary and future directions
The molecular mechanisms of stem cell fate choice involve
multiple, interacting signalling pathways and transcription
factor networks. The resulting signal processing circuitry is
extremely complex and difficult to investigate solely
through reductionist approaches; therefore increasing
numbers of efforts have pursued a systems approach to
understanding stem cell fate choice. The resulting models
provide considerable insight into stem cell fate choice
(summarised in Table 1). Several models have highlighted
the importance of bistability and switches [19–21], as well
as oscillations [22, 41]. Modelling also highlights gaps in
our understanding, generates new hypotheses about
network function and behaviour, and highlights critical
control points that can be manipulated for cellular
Table 1 Summary of the model types used for analysing stem cell fate choice, and the key studies that employed these models

Deterministic Stochastic Bayesian PCA/PLS

Advantages † insight into complex
networks
† aids therapeutic/
process development

† systems with low
numbers of molecules
and/or slow biochemical
reactions
† behaviours not
predicted by
deterministic models

† reverse engineers
network structure with
no a priori knowledge

† condenses large
dataset to several key
parameters
† predicts network
outputs with no
knowledge a priori of
network structure

Requirements † detailed knowledge
of pathway, including
kinetic data

† detailed knowledge
of pathway

† large, high-quality
datasets

† large, high-quality
datasets

Key stem cell
studies

† bistable switches in
Shh and transcription
factor networks [19–21]
† switches and
oscillations in Notch
signalling [41]
† common signalling
pathways [42, 43]
† optimisation of ex
vivo cell production [29]

† stochastic effects
near bifurcation points
[19]
† stochastic switching
between multiple
metastable states [58]

† analysis of
proteomic data from
mouse ES cells to
highlight novel network
links [24]

† analysis of
transcriptome data from
cells of varying potency
[25, 26]
† murine ES cell fate
choice from analysis of
phospho-protein data
[27]
7

& The Institution of Engineering and Technology 2009

, 2010 at 09:49 from IEEE Xplore.  Restrictions apply. 



8

&

www.ietdl.org
expansion and control. Network manipulation for cellular
control has already met with success in some stem cell
types [28, 29], and we anticipate these successes will
continue as regulatory mechanisms of other stem cell types
is subjected to systems analysis. Another interesting avenue
of future research is how stochastics affect stem cell
function, both for endogenous stem cell behaviour during
development and adulthood, as well as in culture when
extraction of a stem cell from its ‘comfortable’ niche may
render it more susceptible to stochastic behaviour. There is
evidence that the expression levels of some key genes that
control stem cell self-renewal fluctuate considerably, and
that the underlying mechanisms governing these switches
are susceptible to stochastic effects [56–58].
Complementary experimental and modelling studies may
yield further insights into this apparent randomness in the
regulation of stem cell behaviour.

Advances in high-throughput experimental techniques
have created large 2omic datasets that are difficult to
interpret without statistical analyses such as Bayesian
networks and/or PCA/PLS. Some work has already
utilised these techniques to highlight novel molecular
interactions and key genes regulating stem cell fate [24–
27], and future application should help further our
understanding of these systems. The role of these
candidates can then be tested experimentally to expand our
knowledge of fate choice mechanisms. Furthermore,
statistical analyses performed to date have primarily focused
on murine ES cells, and future analyses in other stem cell
types such as human pluripotent stem cells should prove
equally fruitful.

In closing, the application of systems biology to the
problem of stem cell fate choice is still young, and
opportunities abound. Collectively, these efforts will bring
us closer to a molecular understanding of stem cell fate
choice and may aid the development of therapies for many
debilitating injuries and diseases.
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