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Abstract

The sequence of a promoter within a genome does not uniquely determine gene expression levels and their variability;
rather, promoter sequence can additionally interact with its location in the genome, or genomic context, to shape
eukaryotic gene expression. Retroviruses, such as human immunodeficiency virus-1 (HIV), integrate their genomes into
those of their host and thereby provide a biomedically-relevant model system to quantitatively explore the relationship
between promoter sequence, genomic context, and noise-driven variability on viral gene expression. Using an in vitro
model of the HIV Tat-mediated positive-feedback loop, we previously demonstrated that fluctuations in viral Tat-
transactivating protein levels generate integration-site-dependent, stochastically-driven phenotypes, in which infected cells
randomly ‘switch’ between high and low expressing states in a manner that may be related to viral latency. Here we
extended this model and designed a forward genetic screen to systematically identify genetic elements in the HIV LTR
promoter that modulate the fraction of genomic integrations that specify ‘Switching’ phenotypes. Our screen identified
mutations in core promoter regions, including Sp1 and TATA transcription factor binding sites, which increased the
Switching fraction several fold. By integrating single-cell experiments with computational modeling, we further investigated
the mechanism of Switching-fraction enhancement for a selected Sp1 mutation. Our experimental observations
demonstrated that the Sp1 mutation both impaired Tat-transactivated expression and also altered basal expression in
the absence of Tat. Computational analysis demonstrated that the observed change in basal expression could contribute
significantly to the observed increase in viral integrations that specify a Switching phenotype, provided that the selected
mutation affected Tat-mediated noise amplification differentially across genomic contexts. Our study thus demonstrates a
methodology to identify and characterize promoter elements that affect the distribution of stochastic phenotypes over
genomic contexts, and advances our understanding of how promoter mutations may control the frequency of latent HIV
infection.
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Introduction

Non-genetic heterogeneity is a ubiquitous feature of cellular

gene expression that can significantly impact the genotype–

phenotype relationship. Even under highly controlled culture

conditions, a clonal population of cells may demonstrate a broad

range of expression levels for a given gene [1–4]. At least some of

this variability, often termed ‘noise’, is believed to arise from the

intrinsically stochastic nature of the biochemical processes

involved in gene expression [5,6]. Studies that couple quantitative

experimentation with mathematical modeling have begun to

reveal the mechanisms by which non-genetic variability is

generated and moderated [7], finding that noise: differentially

impacts the expression of functional classes of genes [8,9]; can be

propagated, amplified, or attenuated by gene regulatory circuits

[10,11]; and is subject to selective pressure [12–15]. Stochastically-

generated expression variability is increasingly appreciated to have

important phenotypic consequences in diverse cellular settings,

including bacterial evasion of antibiotic treatment [16], multi-

cellular development [17], cancer development and progression

[18], and viral latency [19,20].

Recent evidence demonstrates that the chromosomal position of

a gene, or its genomic context, affects both its mean expression

level and expression noise [21–24]. One mechanism by which

genomic context modulates gene expression is by specifying the

dynamics of the local chromatin state, which can impact multiple

neighboring genes [3,25,26]. Additionally, endogenous genes can

sample different genomic environments through translocation and
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recombination, impacting diverse biological processes including

species evolution, organism development, and cancer [27,28].

Human retroviruses, such as human immunodeficiency virus-1

(HIV), also sample genomic environments through semi-random

integration into the host genome, which in turn affects viral

replication [29]. Thus, genomic context impacts cellular pheno-

types and offers additional dimensions of selectable variation that

shape the architecture and evolution of eukaryotic genomes, as

well as the retroviruses that invade them.

Stochastic gene expression phenotypes that are modulated by

genomic context present new challenges for quantifying the

genotype–phenotype relationship. In particular, understanding

how genomic context and gene sequence cooperate to alter gene

expression dynamics requires quantifying how the sequences of

regulatory elements alter the distribution of expression phenotypes

over the set of genomic environments sampled by a gene. Gene

regulatory networks may further alter gene expression phenotypes

by amplifying or minimizing noise in gene expression through

positive and negative feedback. Thus, when a genetic mutation is

linked to a change in the distribution of stochastic phenotypes over

genomic contexts, a further challenge is to identify the underlying

mechanism that drives this change.

In this study, we identify promoter mutations that modulate

context-dependent stochastic phenotypes in a lentiviral human

immunodeficiency virus-1 (HIV) model system and investigate the

mechanisms by which they impact viral gene expression. HIV

exhibits a high degree of genetic variability due to its high

replication rates [30] and the error-prone nature of reverse

transcription [31,32]. Following semi-random integration into the

genome of host CD4+ T cells [29], HIV usually establishes a

productive infection, but in rare cases can adopt a non-replicating

but reversible latent phenotype, such as when an infected activated

T cell transitions to a memory T cell [33,34]. Latently infected

cells do not express virus and thus cannot be effectively targeted by

current therapeutics [35]; however, latent HIV can reactivate after

long delays, leading to renewed viral spread [36]. Consequently,

latent infection represents the single greatest obstacle to fully

eradicating HIV in patients [37]. Importantly, a number of studies

have demonstrated that genomic context and non-genetic

variability play important roles in determining the replication-

versus-latency decision of integrated HIV within a cell

[19,21,22,26]. Thus, HIV provides an ideal system for studying

the interplay between gene sequence, genomic environment, and

stochastic gene expression.

The virally encoded transcriptional activator Tat plays an

essential role in HIV expression dynamics and the replication-

versus-latency decision. The nascent HIV transcript forms a RNA

hairpin, termed the HIV transactivation response element (TAR

loop), that causes RNA polymerase II (RNAPII) to stall [38]. Tat

binds to the TAR loop and in turn recruits the positive elongation

factor b (p-TEFb), which phosphorylates RNAPII to relieve the

stall and complete a cycle of transcription [39]. Transcript

processing and translation then results in production of viral

proteins, including more Tat. Thus, Tat enhances HIV transcrip-

tional efficiency in a strong positive-feedback loop [40] that is

necessary for viral gene expression from proviruses that immedi-

ately initiate replication or from latent infections that reactivate

[41,42].

We have previously demonstrated that an in vitro model of the

HIV Tat positive feedback loop can generate a diverse range of

stochastic phenotypes by sampling genomic contexts. These

stochastic phenotypes include bimodal expression behaviors where

non-expressing and highly expressing cells co-exist in a single

clonal population [20,43] and random switching between these

two expression states occurs with significant delays. Noise in basal

viral gene expression in the absence of Tat varies systematically

over genomic integrations [21,22], and its amplification by Tat

feedback provides a possible mechanism to explain the diverse

phenotypes generated in the presence of Tat. We have hypoth-

esized that stochastically-driven delays in activation for some viral

integrations are an intrinsic property of Tat positive feedback, and

that these delays may provide a sufficient time window to establish

latent infections in vivo when coupled to host-cell dynamics such as

the transition to a memory T cell [20,43]. Thus, HIV sequence

mutations that affect the frequency of stochastic phenotypes in vitro

may affect the frequency of latent infections in vivo. While isolated

examples of promoter mutations that control context-dependent

stochastic phenotypes have been investigated for HIV [43], no

study has yet systematically identified such mutations or analyzed

the mechanisms by which the distribution of phenotypes is

modulated.

Here, we designed a forward genetic screen to select for HIV

promoter mutations that increase the fraction of genomic

integrations that result in stochastic gene expression phenotypes.

Our screen identified important mutations in a number of core

promoter regions, including Sp1 and TATA transcription factor

binding sites. Through single-cell experiments, we confirmed that

our strongest hits – point mutations in Sp1 site III and in the

TATA box – increased the frequency of stochastic phenotypes

several fold. We further demonstrated experimentally that the Sp1

mutation altered basal expression dynamics in the absence of Tat,

and also impaired transactivated gene expression in the presence

of Tat. Computational analysis demonstrated that the changes in

basal expression observed for the Sp1 mutant could contribute

significantly to the enrichment in stochastic phenotypes in the

presence of impaired Tat feedback, if the mutation affected Tat-

mediated amplification differentially across genomic contexts. Our

analysis thus demonstrates a methodology for identifying genetic

elements that affect the distribution of context-dependent stochas-

Author Summary

The sequence of a gene within a cellular genome does not
uniquely determine its expression level, even for a single
type of cell under fixed conditions. Numerous other
factors, including gene location on the chromosome and
random gene-expression ‘‘noise,’’ can alter expression
patterns and cause differences between otherwise identi-
cal cells. This poses new challenges for characterizing the
genotype–phenotype relationship. Infection by the human
immunodeficiency virus-1 (HIV-1) provides a biomedically
important example in which transcriptional noise and viral
genomic location impact the decision between viral
replication and latency, a quiescent but reversible state
that cannot be eliminated by anti-viral therapies. Here, we
designed a forward genetic screen to systematically
identify mutations in the HIV promoter that alter the
fraction of genomic integrations that specify noisy/
reactivating expression phenotypes. The mechanisms by
which the selected mutations specify the observed
phenotypic enrichments are investigated through a
combination of single-cell experiments and computational
modeling. Our study provides a framework for identifying
genetic sequences that alter the distribution of stochastic
expression phenotypes over genomic locations and for
characterizing their mechanisms of regulation. Our results
also may yield further insights into the mechanisms by
which HIV sequence evolution can alter the propensity for
latent infections.

Genetic Selection for Stochastic Phenotypes
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tic phenotypes and the mechanisms by which they function. Our

findings may also contribute to understanding how mutational

selection could alter the frequency of latent HIV infection.

Results

Quantifying context-dependent stochastic phenotypes in
an in vitro model of HIV-1 infection

To quantitatively study stochastic gene expression of HIV

infections as a function of genomic context, we adapted a full-

length HIV NL4-3-based LTR lentiviral packaging platform [44]

by introducing stop codons into all viral proteins except Tat and

by replacing Nef with GFP (sLTR-Tat-GFP; Figure 1A). This

minimal viral system, referred to in this study as wild type (WT), is

similar to a model vector used previously in which Tat and GFP

are expressed from a bicistronic lentiviral vector under control of

the same LTR promoter [20,43]. However, the new sLTR-Tat-

GFP vector more closely mimics HIV gene expression, with Tat

produced as a splice product of two exons as in natural HIV

infection. The leukemic Jurkat T cell line was infected with sLTR-

Tat-GFP at a low multiplicity of infection (MOI,0.1), such that

the majority of infected cells (.95%) contained a single integrated

provirus. The infected, GFP+ cells were then isolated by

fluorescence activated cell sorting (FACS) after stimulation with

tumor necrosis factor-a (TNFa) and cultured for ten days so that

the population relaxed to a steady-state GFP expression profile.

The resulting polyclonal or ‘‘bulk-infected’’ cell population showed

bimodal gene expression, which indicated the presence and

absence of Tat positive feedback in different cellular infections

(Figure 1B), as observed with the previously studied bicistronic

lentiviral vector [20,43].

Bimodal Tat–GFP expression in the bulk-infected population

arises from a mixture of integration events that result in either high

or low gene expression, as well as individual integrations that result

in variable or stochastic gene expression. To separate these

contributions to the overall bulk distribution, we sorted individual

cells – each containing a single (different) genomic integration of

the provirus – from low, mid, or high ranges of GFP expression

(Figure 1B). We then expanded these individual sorted cells to

yield 125 single-integration clonal populations and subsequently

quantified their GFP expression phenotypes by flow cytometry.

Consistent with earlier studies [20,43], a diverse spectrum of clonal

GFP expression phenotypes was observed, including narrow single

peaks of low or high GFP expression (referred to here as Dim and

Bright distributions, respectively), as well as wide and/or bimodal

distributions (Figure 1C). The wide/bimodal clonal distributions

occurred with higher frequency within populations sorted from the

mid-GFP range (Figure S1) and included both cells that are Bright,

representing Tat-transactivated expression that would support

viral replication, and cells that are Dim, representing low levels of

basal expression that may be related to viral latency. Analogously,

earlier work showed that when Dim cells are sorted from the bulk

multi-integration population, a fraction eventually activated and

migrated into the Bright range, and vice-versa [20,22,43]. We

collectively refer to these stochastic viral gene expression

phenotypes as ‘‘Switching’’ and consider them to be a model for

Figure 1. An in vitro model of HIV gene expression exhibits a distribution of integration-site-dependent phenotypes, including
noise-driven Switching phenotypes. (A) Schematic of the full-length HIV lentiviral model of the Tat-mediated positive feedback loop (sLTR-Tat-
GFP). Viral proteins other than Tat were inactivated and Nef was replaced with GFP. (B–C) Flow cytometry histogram of Jurkat cells infected with a
single HIV WT virus for (B) a bulk population with mixed integration positions and (C) sample Jurkat clonal populations, each containing a single
(different) genomic integration of the WT HIV provirus. Representative Dim and Bright clonal histograms were chosen to span the range of
fluorescence means. For Switching phenotypes, representative clonal histograms were chosen from the distribution clusters that were used to define
a quantitative Switching criterion. GFP axis range is the same for all histograms. (D) Quantification of the WT Switching fraction based on a stratified
sample of clones from the full range of GFP expression (‘‘Full’’), and based on a sub-sample of clones sorted from only the Mid region of the bulk
fluorescence range (‘‘Mid’’). Error bars mark 95% confidence intervals, estimated by a bootstrap method.
doi:10.1371/journal.pcbi.1003135.g001

Genetic Selection for Stochastic Phenotypes
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latent infections that can randomly ‘‘switch’’ from an inactive state

to a productive state.

Given HIV’s rapid mutation rate [30–32], an interesting

question is how changes in the viral promoter could affect the

relative frequency of different expression phenotypes over the set

of genomic environments that are sampled through infection and

viral integration, and in particular whether specific mutations

could increase the frequency of Switching phenotypes. As a first

step in addressing this question, we developed objective, feature-

based clustering criteria to classify gene expression behavior for a

clonal population as Switching, Dim, or Bright. In this classifica-

tion, cut-off values were manually selected for nine GFP-

distribution measures that reflect expression heterogeneity, such

as bimodality, width, and skewness (Table S1 and Figure S2).

Distributions with a value exceeding the cut-off for any one of

these features were labeled as Switching (details of methods

described in Text S1). By applying these criteria uniformly to our

initial collection of single-integration clones (Figure 1C), we

estimated the fraction of integrations in our system that led to a

Switching phenotype to be 8.2% (Figure 1D). We developed an

alternate estimate of the Switching fraction based on sampling

single-integration clones sorted only from the mid-GFP range and

extrapolating to the full population (see Text S1). This method

resulted in a similar Switching fraction estimate of 8% (Figure 1D),

and was thus used in the remainder of our study for increased

experimental efficiency.

A stochastic model of Tat positive feedback
demonstrates delayed activation for Switching
phenotypes

We next developed a stochastic model of HIV transcription

and amplification by the Tat positive feedback loop to aid our

intuition concerning the underlying gene expression dynamics

that may account for the observed variation in HIV expression

phenotypes (Figure 2A). We previously built a model of basal

LTR promoter-driven gene expression in the absence of Tat,

which probabilistically described the processes of gene activa-

tion, transcription, and translation [22]. Our analysis suggested

that basal transcription from the LTR occurs in short, infrequent

bursts, and we found that the size of these transcriptional bursts

strongly correlated with mean gene expression from different

viral integration positions [22]. Here, we extended this basic

model to include Tat expression from the LTR, and Tat positive

feedback on transcription from the LTR, by assuming a

Michaelis-Menten-like dependence of transcriptional burst size

and burst frequency on Tat concentration (full model description

included in Text S1). The assumption that Tat positive feedback

enhances the frequency of transcriptional bursts from the LTR is

consistent with observations that Tat interacts with transcription

factors involved in gene activation [45,46], and the assumption

that Tat increases transcriptional burst size is based on

observations that Tat enhances elongation by recruiting p-TEFb

[39].

The model is specified by two basal transcription parameters,

which set the average size and frequency of transcriptional bursts

that occur in the absence of Tat, and three feedback parameters

that describe transcriptional amplification in the presence of Tat.

Two of these feedback parameters, which specify the average

size and frequency of transcriptional bursts at saturating Tat

concentrations (full transactivation), were set to give approxi-

mately a 100-fold increase in transcription rate at saturating Tat

concentrations [40]. The third feedback parameter, which

specifies the Tat concentration at half maximal binding, was

set to approximately the top of the mid range of our bulk

expression distributions (Figure 1B). The remaining model

parameters (including degradation and translation rates) were

set as in previous work [22]. The model, which was solved

numerically for steady-state protein distributions, reproduced

each of our major experimental expression phenotypes over

different ranges of parameter values (Dim, Bright, and Switching

(Figure 2B).

We qualitatively analyzed the relationship between transcrip-

tional dynamics and expression phenotype in our model by

generating a series of phase diagrams. These phase diagrams fix

the Tat feedback parameters in our model as described above,

and then systematically scan over basal transcription parameters,

which are known to vary over genomic integrations [21,22]. By

applying our experimental criteria for Dim, Bright, and

Switching phenotypes to our simulated distributions, we drew

boundaries separating combinations of basal transcription

parameters that lead to distinct expression phenotypes in our

model (Figure 2C).

Interestingly, near the range of model parameters that

generate Switching phenotypes, small changes in basal tran-

scription that occur in the absence of Tat result in large changes

in phenotype when amplified by Tat feedback (Figure 2B).

Additionally, we found that Switching phenotypes exhibit

delayed activation of gene expression. That is, if a simulated

population of cells with model parameters corresponding to a

Switching phenotype is initialized in the Dim state, a time-scale

of one to many weeks is required for half of the population to

cross a threshold of gene expression intermediate between Dim

and Bright states (Figure 2B). This is in contrast to a Bright

steady-state phenotype initialized in the Dim state, which will

cross an intermediate expression threshold on a time scale of

days (corresponding to the time scale of protein dilution in our

cells). The delayed activation observed for the Switching

phenotype is approximately the time scale over which an

activated CD4+ T cell may transition to a memory state, and

memory T cells are a primary reservoir of latent HIV infection in

vivo [33,34]. Thus, the delayed transcriptional activation

exhibited by a Switching phenotype could substantially increase

the opportunity for the memory state transition to occur in an

infected T cell before viral production, and may therefore

increase the probability of a latent infection.

The general relationship between Switching phenotypes and

delayed activation is highlighted by superimposing a measure of

distribution activation time on the phenotypic information in our

phase diagrams (Figure 2C). Delayed activation results when

transactivation depends on the probabilistic (infrequent) occur-

rence of multiple transcriptional bursts that are larger and/or

more closely spaced than occur on average. In our model, such

behavior occurs at intermediate values of basal transcriptional

burst size and frequency, which are typically the same values that

specify Switching phenotypes (additional discussion in Text S1).

Our model thus supports the hypothesis that Switching pheno-

types also exhibit delayed activation, which may underlie the

establishment of latent HIV infections [20,22,43].

Finally, we note that Switching phenotypes also exhibit delayed

deactivation of gene expression as compared to Dim clones when

initiated in a Bright state. Although delayed deactivation is not

relevant to the establishment of latent infections in vivo (due to the

fact that viral replication would kill the host cell and block any

possible memory state transition before deactivation could occur),

it is possible to observe this behavior in our in vitro model. Thus, we

hypothesized that probabilistic delays in both activation and

deactivation can be used to select for Switching phenotypes in our

in vitro system.

Genetic Selection for Stochastic Phenotypes
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Design of a dynamic forward genetic screen to select for
promoter sequences that specify delayed activation and
deactivation of viral gene expression

We exploited the delayed activation/deactivation of gene

expression associated with Switching phenotypes to design a

forward genetic screen to identify LTR promoter mutations that

increase the prevalence of Switching phenotypes, and which could

thus potentially influence the fraction of latent infections. We

prepared a library of HIV-1 vectors in which the WT LTR

promoter was subjected to random point mutations via error-

prone PCR (Figure 3A) [47]. The ,105 member library had an

average mutation rate of 0.6%, such that each position of the 634

base-pair promoter was mutated hundreds of times across the

library. We packaged the library into our model vector, infected

Jurkat cells, and isolated cell populations containing single viral

integrations as described for the WT vector above. The resulting

bulk population of singly infected cells, which was heterogeneous

in both LTR sequence and viral integration position, was

subjected to two alternate phenotypic screens. First, we imple-

mented an ‘activation’ screen, in which infected cells with low GFP

expression (low GFP gate) were isolated by FACS and allowed to

grow for 5 days, at which point cells that had switched to high

GFP expression (high GFP gate) were selected again by FACS.

Second, a ‘deactivation’ screen reversed the order, selecting for

high GFP expression first and low second (Figure 3A). We refer to

the fraction of cells selected in these screens as the activating and

deactivating fraction, respectively.

To confirm that our activation screen effectively selected for

clones with a Switching phenotype, we applied the activation

screen to the WT virus and randomly selected a sample of single

cells from the activating fraction, which were then expanded to

clonal populations for analysis. Remarkably, nearly 54% of these

Figure 2. A computational model of LTR transcription with Tat feedback demonstrates noise-driven Switching phenotypes with
delayed activation/deactivation (A) Model schematic: The viral LTR promoter probabilistically switches between a transcriptionally
inactive state and a transcriptionally active state, with rates ka and ki . In the active state, transcripts are produced with rate k+

t , and
degraded at rate k”

t . Protein translation occurs from each transcript independently at rate kz
p , and each protein is degraded with rate k{

p . As a

model of basal transcription, all rates are assumed constant, and transcript is produced in bursts when ki&k{
t and kz

t =ki is of order 1 or greater [22].
For the transactivation circuit, the translated protein is Tat (plus GFP), and we include a Michaelis-Menten-like dependence on Tat for the promoter
activation and the transcription rates (highlighted in red in the model schematic): ka~ka0 1zaaf Tat½ �ð Þð Þ, kz

t ~kz
t0 1zatf Tat½ �ð Þð Þ,

f Tat½ �ð Þ~ Tat½ �= Tat½ �zcð Þ. The parameters aa and at specify fold-amplification at saturated Tat binding, and c specifies the saturation concentration.
The model output is the predicted steady-state distribution of protein (GFP and Tat) count across a clonal population of cells, which is then converted
to cytometer RFU based on previous calibration [22]. (B) Simulated protein distributions were evolved over time from a Dim initialization (left) for
representative parameter values that lead to Dim, Switching, and Bright steady-state phenotypes (right, blue curves). Simulated steady-state basal
expression distributions for the same parameter values without Tat feedback are given for comparison (i.e. aa~at~0; green curves). Simulated
histograms are normalized and plotted on the same fluorescence axis as the cytometer data in Figure 1. (C) A phase diagram summarizes the
expression phenotypes predicted by the Tat feedback model as basal transcription parameters (ka and kz

t =ki) are varied over the observed
experimental range of values while remaining model parameters are fixed. Drawn boundaries separate parameter combinations leading to distinct
expression phenotypes. Model-predicted equilibration times (i.e., the time after which half of a Dim-initialized population crosses an intermediate
expression threshold between Dim and Bright) are represented on a color scale, with longer times predicted for parameter combinations that specify
Switching phenotypes. Parameter combinations used in (B) are marked with an asterisk.
doi:10.1371/journal.pcbi.1003135.g002
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clones (22 out of 42) showed Switching phenotypes, as compared

to only 8% from the original population and 19% from the mid-

sorted population (Figure S1), confirming the effectiveness of the

screen.

We thus implemented a larger scale analysis to identify viral

promoter mutations that favor Switching phenotypes. Specifically,

we performed multiple rounds of infection and FACS-based

screening as described above to average the behavior of promoter

sequences across different integration positions and thus identify

genotypes that give rise to a higher fraction of Switching

phenotypes across genomic contexts. After each round of infection,

we recovered the viral LTRs from the genomic DNA of the

selected populations (by PCR), re-cloned them into the sLTR

vector, repackaged virus to produce a new library of selected

promoters, and infected a new population of Jurkat cells

(Figure 3A).

Figure 3. A dynamic forward genetic screen selects for LTR promoter sites that increase the frequency of delayed gene expression
activation and deactivation. (A) Schematic of the genetic screen. (B–G) Jurkat cells were infected with the HIV lentiviral vector containing the WT
promoter, the unselected library of promoters, or promoter libraries from each round of selection for delayed activation or deactivation. (B) Fraction
of cells that showed delayed activation 5 days after sorting from the Dim gate. (C) Fraction of cells that showed delayed deactivation 5 days after
sorting from the Bright gate. (D,E) Median GFP expression of the bright peak for promoter libraries selected from the (D) activation screen or (E)
deactivation screen. All bar graphs are presented as the mean 6 standard deviation of 3 replicates, and are representative of duplicate experiments.
(F,G) Flow cytometry histograms comparing the WT initial bulk, multi-integration expression profile to the profile following four rounds of selection
for (F) delayed activation or (G) delayed deactivation.
doi:10.1371/journal.pcbi.1003135.g003

Genetic Selection for Stochastic Phenotypes
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After four rounds of selection, the fraction of activating cells

increased 6-fold compared to the original library (p,0.001, t-test

on triplicate measurements) and 2-fold compared to the WT

promoter (p,0.01; Figure 3B). The fraction of deactivating cells

increased by a factor of 1.7 compared to the original library

(p,0.04) and by a factor of 3 relative to WT (p,0.002; Figure 3C).

Interestingly, the median GFP expression of the Tat-transactivated

population (Bright peak in the bulk GFP histogram) was

significantly lower for the unselected library than for WT, and it

continued to decrease with each round of selection in both screens

(Figure 3D–E). Importantly, the bulk gene expression distributions

of the selected promoters also displayed an increased weight in the

mid range of GFP expression (Figure 3F–G), which we had found

to be enriched in integrations that demonstrate a Switching

phenotype for the WT promoter. Altogether, these results indicate

that our dynamic screens for activation and deactivation effectively

selected for mutations that increased the fractions of activating and

deactivating cells, which is a hallmark of the Switching phenotype.

Genetic screens for delayed activation and deactivation
of viral gene expression select for mutations in the core
LTR promoter

To analyze the LTR promoter mutations that were enriched by

the activation and deactivation screens, approximately 90 clones

were sequenced from each selected library and compared to a

control set of promoters from the unselected library. The average

mutation frequency per position in the selected libraries was

approximately 1.1% (as compared to 0.6% for the unselected

library), but the distribution of mutation frequencies was long-

tailed, with some positions mutated in as many as 20% of the

promoters for a given screen (Figure 4A). We first analyzed how

mutations were distributed across the LTR for the combined

screens by comparing the mutation frequency for each regulatory

region of the LTR with the average mutation frequency over the

whole promoter [48] (Figure 4A). For both screens, mutations

were most significantly enriched in the 78 base-pair core promoter

Figure 4. Genetic screen selects for mutations in the core LTR promoter. (A) Approximately 90 clones were sequenced per library of
promoters. (Top) Sequenced clones from the activation and deactivation screens were combined and the distribution of mutations in functional
regions of the LTR was compared to the distribution of mutations throughout the entire LTR. (Bottom) The frequency of mutations was plotted for
each position of the LTR for the delayed activation screen (red), the delayed inactivation screen (blue), and the unselected library (black). (B)
Frequency of mutations within the core promoter region for the delayed activation screen (red) and the delayed inactivation screen (blue). Arrows
indicate the top two mutations that were selected in both screens. (C) Bar graph displaying the fraction of selected LTR sequences that have
mutations in Sp1 site III or the TATA box for the activation screen (red) and the deactivation screen (blue).
doi:10.1371/journal.pcbi.1003135.g004
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region (p,0.0001, Chi-squared test), which includes transcription

factor binding sites required for efficient promoter activation [48].

In contrast, mutation rates were not increased above those in the

initial library in the enhancer region, the U5 region downstream of

TAR, and in the TAR region itself, possibly reflecting the essential

role of the TAR loop secondary structure to enable efficient gene

expression [49]. The remaining regions displayed increased

mutation frequencies that did not differ significantly from the

average increase across the entire promoter for both selected

libraries.

We next compared the mutation frequency at each position in

the core promoter to the mutation frequency for the same base

type in the unselected library (Figure 4B). We identified two

positions in Sp1 site III, one position in Sp1 site II, and two

positions in the TATA box with significant mutation rates in both

screens (Table S2), with additional Sp1 and TATA positions

significantly mutated in one of the two screens. The top hit was in

Sp1 site III (position 4 of the 10 bp site, p,0.0001). Selection for

this mutation is consistent with our previous results demonstrating

that simultaneous mutation of positions 3 and 4 in Sp1 site III,

which had been shown to eliminate binding of Sp1 [50], also

increased delayed activation and deactivation in infected Jurkat

cell populations [43]. The next strongest hit was in the TATA box

(position 2 of the 8 bp site, p = 0.0005). The A to G mutation

observed most frequently in our selected libraries has been

previously shown to reduce the affinity of the TATA binding

protein (TBP) for the TATA box [51]. Notably, mutations at

positions 3 and 4 of the TATA box, which are considered critical

for TBP binding and thus TATA function [51,52], were not

enriched in either screen.

Altogether, for the activation screen we found that 40% of the

sampled sequences had mutations in Sp1 site III, and 25% had

TATA mutations; for the deactivation screen, 20% had mutations

in Sp1 site III, and 20% had TATA mutations (Figure 4C). All of

these mutation frequencies were well above those for the same

regions in the unselected library. Together, these results suggest

the importance of Sp1 site III (and to a lesser extent the TATA

box) in controlling stochastic gene expression and Switching

fractions.

Mutations in Sp1 site III and the TATA box increase the
occurrence of Switching phenotypes

To directly analyze how the point mutations identified in our

screen affect gene expression, we generated vectors with a single

point mutation at position 4 of the Sp1 site III (Sp1 mutant) or at

position 2 of the TATA box (TATA mutant) (Table S3), and

infected Jurkat T cells as previously described. The TATA

mutation increased both the activating and deactivating fractions

of the infected population by approximately 2.5-fold relative to

WT (p,0.01; Figure 5A–B), and the Sp1 mutation increased the

activating fraction 1.5-fold (p,0.03; Figure 5A) and the deacti-

vating fraction almost 7-fold relative to WT (Figure 5B, p,0.001).

Both point mutations also significantly decreased Tat-mediated

gene expression and increased expression in the mid-range of

fluorescence (Figure 5C), mirroring the bulk expression phenotype

of the full library after selection, and consistent with previous

studies [43,53,54].

We next quantified Switching fractions for both mutants by

sorting approximately 80 single-integration clones from the mid-

range of GFP in the bulk populations as previously described for

the WT virus (Figure 1). The Switching fractions increased from

8% for the WT virus to 25% for the TATA mutant and 46% for

the Sp1 mutant (Figure 5D). These results confirm that increased

activation and deactivation in the bulk infection for these mutants

reflect an increased frequency of single-integration clonal Switch-

ing phenotypes (p,0.01, bootstrap method).

Selected mutations in Sp1 site III result in small but
significant differences in basal gene expression dynamics
across integration positions

We next considered how promoter mutations might alter

transcriptional dynamics to increase the fraction of infections that

generate Switching phenotypes. For this analysis, we chose to focus

on the Sp1 point mutation, because this point mutation exists in

naturally occurring HIV isolates, while the TATA mutation was

not found (as determined by searching the Los Alamos HIV

sequence database, http://www.hiv.lanl.gov). Furthermore, our

previous work also demonstrated a role for Sp1 site III in

regulating Switching phenotypes [43].

Our earlier work demonstrated that basal transcription (i.e. in

the absence of Tat) varies significantly with integration position of

the LTR [22]. Therefore, we hypothesized that Sp1 may modulate

Figure 5. Selected mutations in Sp1 site III and the TATA box
increase the Switching fraction. Jurkat cells were infected with the
HIV lentiviral vector containing the WT promoter, with a single point
mutation in Sp1 site III (position 4), or with a single point mutation in
the TATA box (position 2). (A) Relative fraction of cells that activated 5
days after sorting from the Off gate. (B) Relative fraction of cells that
deactivated 5 days after sorting from the Bright gate. (C) Flow
cytometry histograms comparing the WT bulk-infection profile (gray)
to the profile for TATAmutP2 (left) and Sp1mutIII (right). Note the
reduced weight and position of the Bright (Tat-transactivated) peak and
the increased weight of the mid region. (D) Switching fractions for WT
and selected mutants. Approximately 80 clones were sorted from the
mid region for each infected population, and the Switching fraction was
estimated as described in the main text. Error bars indicate 95% CIs,
estimated by a bootstrap method. Significant differences from WT
(p,0.01) indicated by (*).
doi:10.1371/journal.pcbi.1003135.g005
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phenotypic distributions by directly affecting basal transcription.

To test this hypothesis, we introduced stop codons into the first

Tat exon of the lentiviral vector backbones of the WT and the Sp1

mutant promoter and infected Jurkats as described above

(Figure 6A). Bulk-infection expression distributions for both Tat-

null vectors demonstrated substantial overlap with autofluores-

cence controls, but with a strong right skew towards higher

fluorescence. Notably, a small but significant decrease in mean

GFP expression was observed for the Sp1 mutant promoter

compared to WT (p,0.05), consistent with previous studies

[53,54]. Additionally, clonal cell populations expanded from each

bulk population had monomodal, wide, right-skewed distributions

(Figure S3) and displayed high levels of noise across clonal

expression means (Figure 6B), consistent with previous results for

the WT LTR promoter [22].

To infer the underlying transcriptional dynamics of our Tat-null

clones, we systematically fit their GFP distributions using our

model (Figure 2A with transactivation removed), following our

earlier analysis of WT basal expression dynamics [22]. The sets of

clonal WT and Sp1 distributions were all best accounted for by a

bursting dynamic, whereby short infrequent transcriptional bursts

generate large basal expression heterogeneities (see Text S1 and

[22] for further discussion). The basal transcription dynamics for

each clonal population were fully quantified by a best-fit basal

transcriptional burst size and burst frequency. Transcriptional

burst sizes were found to vary from a few to tens of transcripts, and

to be strongly positively correlated with mean expression level

across different integration positions for both the mutant and for

the WT vector (Figure 6C). In contrast, typical transcriptional

burst frequencies were on the order of a few events per cell division

time, and demonstrated little correlation with mean gene

expression levels over integration positions (Figure 6D). These

findings are consistent with our earlier analysis of the WT

promoter [22].

Although the Sp1 mutant and WT promoters share the same

qualitative basal expression dynamics, regression analysis revealed

that the Sp1 mutant demonstrated an increased positive correla-

tion between basal burst frequency and clonal expression mean,

with burst frequencies decreased for Dim clones (Figure 6D;

p = 0.04). Thus, the selected Sp1 mutation does not change the

qualitative bursting mode of transcription from the HIV LTR, but

it does appear to modestly alter how the dynamics vary

quantitatively across integration positions.

Altered basal gene expression dynamics for the Sp1
mutation may contribute to Switching-phenotype
enrichment

We returned to our model to explore if the small changes in

basal transcriptional dynamics quantified experimentally with our

Tat-null vector could contribute significantly to the increased

Switching fraction observed for the Sp1 mutant in the presence of

Tat (Figure 5D). The phase diagrams developed for the WT

Figure 6. Selected mutations result in small but significant differences in basal gene expression. (A) Flow cytometry bulk-infection
histograms for Jurkat cell populations. Each cell contains a single (different) integration of the Tat-null vector (sLTR-GFP-TatKO) with a WT LTR
promoter (black), or an LTR with an Sp1 site III mutation (red). Uninfected Jurkat histogram is displayed for reference (gray). (B–D) Distribution noise
(defined as CV2) versus mean GFP for Sp1 mutant clones sorted and expanded from the bulk populations in (A). (C–D) Clonal histograms were fit with
the stochastic gene-expression model in the absence of feedback (Figure 2A), and best-fit parameters were calculated for (C) transcriptional burst size
and (D) transcriptional burst frequency. Each point in B–D represents a single-integration clone from a WT (gray) or Sp1 mutant (red) infection.
doi:10.1371/journal.pcbi.1003135.g006
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promoter (Figure 2C) specify the predicted expression phenotype

for every combination of basal transcriptional burst size and burst

frequency parameters for fixed Tat feedback. Thus, model phase

diagrams can be used to predict the Switching fraction that would

result from a given probability density with which the virus

samples basal transcriptional parameters through its sampling

genomic locations via infection and integration, under the

assumption of fixed Tat feedback. We used our experimental

data to estimate the probability density with which the WT and

Sp1 mutant promoters sampled combinations of basal transcrip-

tion parameters (see Text S1 for details), and then calculated

model-predicted Switching fractions by integrating this sampling

density over the Switching region of the phase diagram (Figure 7A).

We found that the changes in basal transcriptional dynamics

observed for the Sp1 mutant – particularly the increased sampling

of lower transcriptional burst frequencies, which specify noisier

basal transcription – indeed resulted in higher model-predicted

Switching fractions compared to WT for all sets of feedback

parameters analyzed. In particular, for a set of feedback

parameters that specify a model-predicted Switching fraction of

12% for the WT basal parameter sampling density, the model

predicted a Switching fraction of 22% for the Sp1 mutant

sampling density (Figure 7B). Thus, we conclude that changes in

Sp1 basal transcription dynamics can result in a substantial

increase in the fraction of genomic integrations that lead to a

Switching phenotype in the presence of Tat feedback.

Figure 7. Computational models exploring Switching fraction modulation by the Sp1 mutation. (A) Model phase diagrams varying basal
transcriptional parameters at fixed values of Tat feedback parameters. Drawn boundaries separate parameter combinations leading to distinct
phenotypes (as in Figure 2C). Superimposed color map estimates the probability density with which the virus samples basal transcription parameters
over genomic integrations for the WT promoter (left) and Sp1 mutant promoter (right). Tat feedback parameters that result in a WT Switching-
fraction estimate of 12% specify the solid phenotypic boundaries (base). Decreasing the fold-amplification of Tat feedback (reduced feedback, short
dashed lines) shifts phenotypic boundaries to the right, while impaired reinitiation (long dashed lines) has little effect on phenotypic boundaries. (B)
Estimated Switching fractions for the sets of Tat feedback parameters used in (A), normalized by the predicted WT Switching fraction for the base set
of parameters (solid line). (C) Sample Switching (grey) and Bright (black) distributions for the base set of Tat feedback parameters (solid) and for
impaired reinitiation parameters (dashed). The degree of transcriptional reinitiation impairment was chosen to produce a comparable shift in Bright
phenotype as the parameters for reduced feedback (A–B). The model extension to include transcriptional reinitiation was implemented by a simple

rescaling of model parameters according to: k�t0~kz
t0

kr

kz
t0 zkr

(rescaled basal transcription rate); a�t ~at

kr

kz
t0 zatk

z
t0 zkr

(rescaled amplification factor

for transactivated transcription rate); c�~c
kz

t0 zkr

kz
t0 zakz

t0 zkr

(rescaled feedback saturation parameter). Details may be found in Text S1.

doi:10.1371/journal.pcbi.1003135.g007
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Attenuated Tat positive feedback resulting from
impaired transcriptional reinitiation can preserve
increased Switching fractions for the Sp1 mutant

In addition to altering basal expression, mutations in Sp1 site III

weaken Tat positive feedback, as demonstrated in our experiments

(Figure 5C) and in previous work [53]; however our model had not

yet accounted for this observation. We therefore explored if

weakening Tat positive feedback in the model would maintain the

predicted Switching fraction enrichment that arises from altered

basal transcription, or even enhance it to more fully account for

the nearly 6-fold enrichment observed in our experiments. In

contrast to these expectations, we found that decreasing Tat-

driven fold-amplification of basal transcription in the model

typically decreased predicted Switching fractions (Figure 7B), a

result which can be explained by our model phase diagrams

(Figure 7A). Notably, weakening feedback shifts phenotypic

boundaries to the right (towards larger basal transcriptional burst

sizes), transforming Bright integrations to Switching, and Switch-

ing to Dim. The resulting Switching region typically enclosed a

smaller fraction of the viral basal parameter sampling density,

which is highly right skewed and heavily weighted at lower basal

transcriptional burst sizes. Thus, our analysis suggests that the Sp1

site mutation specifies a more complex perturbation of the Tat

positive feedback loop that differentially affects Bright and Dim

integrations, rather than one that uniformly attenuates expression

amplification over genomic integrations.

A biological mechanism by which the Sp1 site mutation could

differentially affect Bright and Dim integrations is by impairing

transcriptional reinitiation. In the bursting model of transcription,

each gene activation event can drive multiple cycles of transcrip-

tion, requiring multiple rounds of RNAPII binding and transcrip-

tion-complex formation (i.e. reinitiation). In the absence of Tat,

the rate-limiting step in HIV-LTR transcription is RNAPII stalling

at the TAR hairpin that forms after transcriptional initiation [38].

Therefore, moderate impairment of the reinitiation rate via

mutation would be masked during basal transcription, or for

integrations that inefficiently activate Tat feedback. However, at

higher concentrations of Tat, when the TAR-loop stall is no longer

rate limiting, impaired reinitiation would significantly attenuate

full Tat transactivation, and the effect would be more pronounced

for Brighter genomic integrations. Because Sp1 and p-TEFb

interact in vivo to activate HIV transcription [46,55,56], a mutation

in the Sp1 site could plausibly alter transcriptional reinitiation if it

disrupted recruitment of p-TEFb.

To investigate this possibility, we extended our model to include

a ‘reinitiation’ step between each transcript production event

(rescaled model parameters included in Figure 7 legend and full

model description and equations included in Text S1). The

effective transcript production rate in this extended model depends

on both an elongation rate, which varies over genomic integra-

tions, and a reinitiation rate, which is fixed (but may be altered

through mutation). The elongation rate specifies the variation of

the basal and transactivated transcription rates over genomic

integrations, while the reinitiation rate specifies the maximal value

at which the transcription rate saturates as a function of elongation

rate. In this extended model, we found that a moderate decrease in

the transcriptional reinitiation rate had little effect on the

phenotypic boundaries of our phase diagrams (Figure 7B), but

significantly weakened Tat-transactivated expression from Bright

integrations (Figure 7C), consistent with our experimental

observations (Figure 5C). As a result, predicted Switching fractions

were preserved, though they were not further enhanced to the

level observed experimentally. Thus, moderate impairment of

transcriptional reinitiation could account for the observed

attenuation in Tat-mediated gene expression (Figure 7B), while

preserving (but not increasing) the Switching fraction enhance-

ment that was predicted for the observed changes in Sp1 mutant

sampling of basal transcription parameters.

Discussion

Amplification of HIV gene expression noise via Tat positive

feedback results in a wide range of noise-driven phenotypes that

vary across the diverse host genomic environments sampled during

HIV infection. Here, using an in vitro cell-based HIV model system

and a novel forward genetic screen, we identified LTR promoter

mutations that increase the frequency of the Switching phenotype,

a model for latent viral infections. Two key features of our screen

are 1) its dynamic nature, which selects for stochastic phenotypes

that ‘switch’ between quiescent and highly expressing states; and 2)

integration randomization, which applies selective pressure on

mutations affecting the fraction of integrations that specify

Switching phenotypes rather than on the integration positions

themselves. These features reflect the time-varying selective

pressure that is likely applied by a dynamic immune system and

therapy schedule, and the integration randomization that occurs

when a viral lineage is propagated by new infections in vivo. Our

forward genetics approach enabled the systematic identification of

promoter elements that affect the Switching fraction, and

complements prior reverse genetics approaches that analyzed

how specific mutations affect gene expression and phenotype

[43,53,57]. The screen identified strongly selected mutations in

Sp1 and TATA transcription factor binding sites within the core

transcriptional regulatory region of the HIV LTR, and we

confirmed that these mutations led to higher frequencies of

Switching phenotypes across integration positions.

Integrating models and measurements to identify
biological mechanisms underlying experimental
observations

Our study was enabled by the development of a computational

model that described how promoter-driven expression fluctuations

are propagated via Tat positive feedback to generate the wide

range of expression phenotypes in our system. We used this model

to investigate features of Tat feedback that generate stochastic

phenotypes, to formulate hypotheses concerning the mechanisms

by which these features may be varied through mutation, and to

study the implications and consistency of these hypotheses with

our experimental data.

The Tat transactivation circuit – an essential and conserved

feature of the HIV virus across clades – is characterized in our

model by positive feedback loops that enhance both the size and

frequency of transcriptional bursts. HIV gene expression pheno-

types range from Dim to Bright as the kinetic parameters of the

circuit are varied, with intermediate parameter values generating

the stochastic Switching phenotypes that our screen was designed

to select. These Switching phenotypes, which we have suggested

may serve as a model for latent infection [20,22,43], are

characterized by Tat-amplified transcriptional fluctuations that

drive stochastic switching between quiescent and highly expressing

states (Figure 2). Importantly, all of the transcriptional and

regulatory processes described in our model – and their underlying

kinetic parameters – can be modulated by genomic environment.

Thus, a viral sampling of genomic environments that range from

repressive to permissive can tune the steady-state behavior of Tat

positive feedback circuit to generate a distribution of expression

phenotypes that span from Dim to Bright, with intermediate

integrations generating Switching phenotypes [41]. In this way,
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the possibility of stochastically-generated latent phenotypes at a

subset of viral integrations may be an intrinsic feature of the Tat

circuit and its sampling of host-cell genomic environments, and the

virus may tune the fraction of integrations that specify this

phenotype through mutation.

Guided by our model analysis both here and in previous work

[22], we hypothesized that the Sp1 mutation may alter the

prevalence of Switching phenotypes by modulating basal tran-

scription dynamics. Although the underlying basal bursting

dynamic of the WT promoter was essentially preserved in the

Sp1 mutant (Figure 6), we were able to detect modest quantitative

differences in the sampling of basal expression dynamics over

integration positions. Our computational analysis confirmed that

these small differences in basal expression for the Sp1 mutant

could be amplified in the presence of Tat feedback to produce

substantial increases in the Switching fraction (Figure 7B).

The selected Sp1 mutant also demonstrated weaker Tat-

transactivated expression, and we further used our model to

investigate how this could affect the Switching fraction. Our model

analysis demonstrated that weakening Tat feedback proportion-

ately for all integrations would decrease, rather than increase,

Switching fractions (Figure 7B). Thus, accounting for an increased

Switching fraction in the presence of weaker Tat feedback

required a mechanism by which the selected mutation could

differentially affect basal and transactivated expression, which we

suggested could be accomplished through impaired transcriptional

reinitiation. A revised computational model that included

impaired transcriptional reinitiation could thus account qualita-

tively for both trends observed experimentally for the Sp1 mutant:

an enhanced Switching fraction accompanied by attenuated Tat-

transactivated expression (Figure 7B–C). However, we note that

our model still does not quantitatively account for the full increase

in Switching fraction observed experimentally for the Sp1 mutant

(Figure 5D). A complete explanation might thus require identifi-

cation of additional mechanisms that differentially affect Tat

transactivation across genomic integrations and a more detailed

characterization of how the selected mutations perturb the

transcription parameters sampled by the virus over genomic

integrations.

Mechanisms by which Sp1 and TBP may control HIV
expression phenotypes

Multiple studies have demonstrated that mutations in the Sp1

sites of the HIV LTR can significantly reduce HIV Tat-mediated

transactivation, while minimally affecting basal expression (for

those cases in which it was measured) [53,55,58,59]. Although the

detailed mechanisms by which Sp1 regulates HIV expression

remain unknown, there is evidence that Sp1 recruits P-TEFb in

vivo to release the stalled RNAPII from the promoter proximal

region and activate transcriptional elongation of HIV [46,55,56].

To our knowledge, a role for Sp1 in transcriptional reinitiation has

not been directly tested. However, if Sp1 participates in

recruitment of P-TEFb, then lower affinity Sp1 binding (caused

by promoter mutation) may destabilize the P-TEFb complex in the

promoter active state and thus lower the rate of transcriptional

reinitiation (kr in our model).

Interestingly, TATA mutations in the HIV LTR also substan-

tially reduce Tat-mediated transactivation without affecting mean

basal expression from the HIV LTR [53,54,60,61], similar to

observations by others and us for Sp1 mutation. Although we did

not explore the mechanisms underlying mutation of the TATA

box, an increase in the half-time of transcriptional reinitiation (1/

kr in our model) has been measured directly for a mutation at site

2 of the TATA box [62]. Furthermore, TATA box mutations that

decreased reinitiation also correlated with decreased stability of the

TBP:TFIIA (general transcription factor) complex on the DNA,

suggesting that retention of general transcription factors at the

promoter is a primary determinant of the reinitiation rate [63].

Our results motivate a future experimental study that directly

measures if reduced transcriptional reinitiation provides a

mechanistic explanation for the differential effect of Sp1 and

TATA box mutations on basal and Tat-transactivated HIV

transcription, as observed here and in many previous studies

[53,55,58,59].

Implications for our understanding of HIV latency
In vivo, infected CD4+ T cells that have transitioned to a

memory state form a primary reservoir of latent infection [33,34].

However, HIV does not efficiently establish infection in resting

memory CD4+ T cells [64,65], and activated CD4+ T cells

typically die within days after infection [30]. Therefore, we

hypothesize that transcriptional delays, such as those associated

the Switching phenotype in our in vitro system and that occur on a

similar time scale to the memory-state transition, could delay viral

production and thus increase the time window during which the

memory-state transition could occur post-infection. Thus, viral

mutations such as the Sp1 and TATA mutations identified in our

study, which result in an increased fraction of viral integrations

demonstrating transcriptional delays, could lead to an increase in

the fraction of memory T cells that harbor a latent infection.

If this in vitro model of latency has in vivo implications, then our

results suggest that there may be enrichment for viruses with an

Sp1 and/or TATA box mutation in the latent reservoir. Although

we are unaware of any direct evidence of enrichment for either

Sp1 or TATA box mutations in the latent pool, there is evidence

that viruses with an Sp1 site III mutation are enriched during the

course of disease progression [66] and that viruses with impaired

Tat activity are enriched in latent reservoirs [67]. These studies

are suggestive that some viral mutations, particularly ones affecting

Tat transactivation as demonstrated in our study, may create

favorable conditions for establishing latent infections. Interestingly,

these studies suggested that lower transcriptional activity may

underlie the propensity of these viruses to establish a latent

infection, but our results suggest it is instead the increased

probability for transcriptional delay that potentiates latent

infection. A related and testable hypothesis is that the three HIV

subtypes (D, F and H) with mutations in Sp1 site III may

demonstrate an increased propensity for latency and thus give rise

to larger latent reservoirs relative to subtype B infection. To our

knowledge, there is no study that has examined the relative sizes of

the latent viral reservoirs for different HIV subtypes, and therefore

this may be an important translational study that is motivated by

our work.

In conclusion, our study provides an integrated experimental

and computational framework for identifying genetic sequences

that alter the distribution of stochastic expression phenotypes over

genomic locations and for characterizing their mechanisms of

regulation. Our results also may yield further insights into the

mechanisms by which HIV sequence evolution can alter the

propensity for latent infections.

Methods

Cell culture
HEK293T cells (ATCC) were cultured in IMDM (Mediatech)

and Jurkat clone E6 cells (ATCC) were cultured in RPMI

(Mediatech). All media was supplemented with 10% FBS (Gibco)

and 100 U/ml penicillin+100 mg/ml streptomycin (Gibco). Jurkat
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cell concentrations were maintained between 26105 and 26106

cells/ml in 5% CO2 at 37uC.

Viral cloning and packaging
We modified a full-length single-LTR packaging platform

described previously in which HIV Nef was replaced with GFP

[44]. Multiple stop codons were introduced into all viral proteins

except Tat (psLTR-Tat-GFP; Table S4) using Quickchange site-

directed mutagenesis (Stratagene). To generate Tat-null sequenc-

es, additional stop codons were introduced into the first exon of

Tat (psLTR-TatKO-GFP). The LTR promoter library was

amplified in an error-prone PCR reaction described previously

[47] using Taq DNA polymerase with 2% MnCl2. The resulting

promoter library was cloned into the psLTR-Tat-GFP by

restriction digest with PmeI and KasI. Following each round of

selection, the genomic DNA from the selected cells was isolated

using a QiaAMP DNA Micro Kit (Qiagen) and the LTR

promoters of the integrated proviruses were amplified with

primers that retained the PmeI and KasI restriction digest sites

for cloning. Single point mutations in the LTR were introduced

with Quickchange site-directed mutagenesis (see Table S3 for

sequences) and each mutant LTR was sequenced and subcloned

back into the parental plasmid to avoid unintended mutations. All

psLTR-Tat-GFP and psLTR-TatKO-GFP plasmids were pack-

aged and harvested in HEK 293T cells with helper plasmids

(pcDNA3 IVS VSV-G, pMDLg/pRRE, pRSV Rev, and

pCLPIT-tat mCherry) as previously described [20,68]. Harvested

lentivirus was concentrated by ultracentrifugation to yield between

107 and 108 infectious units/ml. To titer, Jurkat cells were infected

with a range of vector concentrations and six days post infection,

gene expression of infected cells was transactivated by stimulation

with 20 ng/ml PMA (Sigma) and 400 nM TSA (Sigma). After

stimulation for 18–24 hours, GFP expression was measured by

flow cytometry, and titering curves were constructed by deter-

mining the percentages of cells that exhibited GFP fluorescence

greater than background levels.

Library selections and analysis
Jurkat cells were infected with the sLTR-Tat-GFP virus at an

MOI of #0.1 and cultured for 7–10 days. Cells were stimulated

with 20 ng/ml TNF-a (Peprotech) for 18–24 hours and GFP+
cells were sorted on a MoFlo Cell Sorter (Cytomation). Sorted cells

were cultured for 10 days. For the activation screen, cells were

sorted from the off peak (bottom third of the full range of GFP

expression), cultured for 5 days, and then selected as positive for

enrichment if the cells activated above the mid-point of the

expression range. For the inactivation screen, cells were sorted

from the bright peak (top third of the full range of GFP

expression), cultured for 5 days, and then selected as positive for

enrichment if the cells inactivated below the mid-point of the

expression range. Flow cytometry data analysis was performed

with FlowJo (Tree Star, Inc.).

Selection of infected clones
For LTR-Tat-GFP infections, single cells were selected from the

region of interest (bottom third of the expression distribution for

off cells, mid third of the expression distribution for bimodal cells,

and top third of the expression distribution for bright cells). For the

LTR-Tat-null vector, single cells were selected from either the top

10% or 18% of the GFP expression distribution and sorted into

each well of a 96-well plate on a MoFlo Cell Sorter (Cytomation).

Clonal cells were cultured for 2–3 weeks and then analyzed on an

FC500 flow cytometer (Becton Dickenson).

Clonal phenotypic determination and Switching-fraction
estimation

Fluorescence histograms for single-integration clonal sLTR-Tat-

GFP infections were labeled as Switching if they exceeded

specified cut-offs in any of the following distribution features:

inter-quartile range, cube root of 3rd central moment, peak

separation and dip for bimodal distributions, and the product of

distribution weight in approximately the lower third and upper

half of our cytometer log fluorescence range. Feature cut-offs were

specified by visualizing the full set of clonal distributions using k-

means clustering based on 8 distribution features normalized by

inter-quartile range (those mentioned, and mean log fluorescence,

distribution weight in the lower 3rd of the bulk fluorescence range,

and distribution 4th central moment) using 20 clusters and a

Euclidean distance, implemented in Matlab (The Mathworks).

Sorting clusters separately by each feature centroid allowed

identification by eye of features and cut-off values beyond which

all distributions could be labeled as Switching. This approach

extended our by-eye intuition from distributions whose phenotype

could be unambiguously scored by eye to those whose phenotype

was ambiguous (see Text S1 for further details). Key results, such

as Switching fraction enrichment for our analyzed mutants, were

robust to variation of feature cut-off values.

Switching fractions, over the full set of genomic integrations,

were estimated from mid-sorted sub-samples, via an application of

Bayes theorem:

P Sð Þ~P S Mjð ÞP Mð Þ=P M Sjð Þ

where S is the event that an infected cell contains a Switching

integration and M is the event that the cellular fluorescence is in the

range of the sorting gate (i.e. mid range). The conditional

probability, P S Mjð Þ, was estimated as the fraction of clones from

a given mid sort that were labeled as Switching (P̂P S Mjð Þ~ns=n
where n is the total number of clones analyzed from the mid sort and

ns is the number that were labeled as Switching). The probability

that a cell expresses fluorescence in the range of the sort, P Mð Þ, was

estimated by the distribution weight of the bulk multi-integration

population in the sort range. P M Sjð Þ, the distribution weight in the

sort region for the full population of Switching integrations, was

estimated from our mid-sorted set of Switching clones as:

P M Sjð Þ~ns=
Xns

i~1

1=wi

 !

where the wi are individual distribution weights of the mid-sorted

Switching clones in the sort region. Uncertainties in Switching-

fraction estimation were calculated based on a bootstrap approach

[69]. Further details are provided in Text S1.

Computational modeling and distribution fitting
Our model of the transactivation circuit considers each reaction

as a Markov process, proceeding with fixed probability per unit

time (full model details in Text S1). For any fixed set of parameter

values, the model was solved to obtain predicted steady-state

protein distributions across a clonal population of cells by

approximating and numerically integrating the master equation

for the system [70] in time until a stationary distribution was

achieved. Protein numbers were convert to cytometer RFU by

scaling, and distributions were convolved with a measured

autofluorescence profile for comparison with experimental distri-

butions, following [22].
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Tat-null distributions were fit to the transactivation model with

feedback from Tat removed based on the first 6 distribution

moments (see Supplemental text for further details). Transcrip-

tional bursting was assumed, so that transcriptional burst size

(b~kz
t =ki) and burst frequency (ka) were the only model fit

parameters, with the remaining model parameters calibrated

following [22]. The assumption of transcriptional bursting was

checked by systematically varying the active-state duration

(t~1=ki) and refitting the model at each value. Consistent with

[22], the best fits were always found in the transcriptional bursting

regime (t%1). All analysis was done using in-house code written in

Matlab (The Mathworks).

Statistical analysis
Statistical significance of differences between means in triplicate

experiments was assessed using a 2-sided t-test. Pearson Chi-

squared statistics were calculated for the appropriate contingency

tables to assess differences in mutation rates between libraries

marginally and by regulatory region, and at individual positions

along the promoter, after controlling for base type in the WT

(parent) sequence. All quoted raw p-values for post-hoc analysis

remain significant at the a~0:05 level for Type I error after

Bonferroni correction, and corresponding global tests were always

significant at least at this level. Equality of regression coefficients

was assessed by partial F-test, and differences between individual

regression parameters were assessed by t-test in post-hoc analysis.

Confidence intervals for experimental Switching fraction esti-

mates, and p-values for their differences, were estimated using a

bootstrap procedure. Contingency table analysis was conducted

using SAS/STAT software version 9.1 for Windows, Copyright

2012 SAS Institute Inc. All other computational analysis was

performed using Matlab (The Mathworks).

Supporting Information

Figure S1 Enrichment for wide/bimodal (i.e., ‘‘Switching’’)

phenotype. WT clones were isolated by FACS using three different

sorting methods: 1) cells sorted from the entire infected population;

2) cells sorted from the mid-GFP region of the infected population;

and 3) cells sorted from the activating fraction after one round of

selection. Switching fraction was estimated as described in Text

S2. Error bars indicate 95% CIs, estimated by a bootstrap method.

(PDF)

Figure S2 Clonal-distribution clustering for phenotypic deter-

mination. A) Frequency histograms of distribution features over

the full set of clones analyzed for the Tat feedback vector in this

study, with dashed lines marking cut-off values that were used for

phenotypic specification. B) Full set of clustered, relative-

frequency, clonal expression distributions, with distributions

phenotypically labeled as Dim (blue), Bright (green), or Switching

(red). Clusters are ordered by centroid value for the IQR feature.

C) Heat-map representation of clustered clonal expression

histograms, with clusters ordered as in B, with distributions

ordered within clusters by IQR. To better visualize wide

distributions, a count of 1 was added to each histogram bin, and

the log count was represented in a color map, normalized between

the minimum and maximum count for each clonal histogram.

(PDF)

Figure S3 Log-binned histograms of clones infected with the

WT Tat-null vector and the Sp1 mutant Tat-null vector. Clonal

distributions were monomodal and wide with highly skewed

distributions, which becomes apparent upon transformation to a

real fluorescence axis.

(PDF)

Table S1 Features used in cluster-based analysis of clonal

populations

(PDF)

Table S2 Positions in the LTR with significant mutation rates

following selection.

(PDF)

Table S3 Point mutations introduced into LTR promoters used

in our experimental studies.

(PDF)

Table S4 Sequences of HIV genes up to and including stop

codons used in the sLTR-Tat-GFP vector.

(DOCX)

Text S1 Supporting computational methods. This text contains

explanatory notes on feature-based clustering, estimates of

Switching fraction, details of the Tat feedback model, including

model equations and parameters.

(PDF)
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14. Freed NE, Silander OK, Stecher B, Böhm A, Hardt W-D, et al. (2008) A simple

screen to identify promoters conferring high levels of phenotypic noise. PLoS

Genet 4: e1000307.

15. Wolf DM, Vazirani VV, Arkin AP (2005) Diversity in times of adversity:

probabilistic strategies in microbial survival games. J Theor Biol 234: 227–

253.

Genetic Selection for Stochastic Phenotypes

PLOS Computational Biology | www.ploscompbiol.org 14 July 2013 | Volume 9 | Issue 7 | e1003135



16. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial

persistence as a phenotypic switch. Science 305: 1622–1625.

17. Raj A, Rifkin SA, Andersen E, van Oudenaarden A (2010) Variability in gene

expression underlies incomplete penetrance. Nature 463: 913–918.

18. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, et al. (2010) A

chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations.

Cell 141: 69–80.

19. Singh A, Weinberger LS (2009) Stochastic gene expression as a molecular switch

for viral latency. Curr Opin Microbiol 12: 460–466.

20. Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV (2005)

Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat

fluctuations drive phenotypic diversity. Cell 122: 169–182.

21. Singh A, Razooky B, Cox CD, Simpson ML, Weinberger LS (2010)

Transcriptional bursting from the HIV-1 promoter is a significant source of

stochastic noise in HIV-1 gene expression. Biophys J 98: L32–34.

22. Skupsky R, Burnett JC, Foley JE, Schaffer DV, Arkin AP (2010) HIV promoter

integration site primarily modulates transcriptional burst size rather than

frequency. PLoS Comput Biol 6: e1000952.

23. Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, et al. (2011)

Mammalian genes are transcribed with widely different bursting kinetics.

Science 332: 472–474.

24. Batenchuk C, St-Pierre S, Tepliakova L, Adiga S, Szuto A, et al. (2011)

Chromosomal Position Effects Are Linked to Sir2-Mediated Variation in

Transcriptional Burst Size. Biophysj 100: L56–8

25. Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) Stochastic mRNA

synthesis in mammalian cells. Plos Biol 4: e309.

26. Miller-Jensen K, Dey SS, Schaffer DV, Arkin AP (2011) Varying virulence:

epigenetic control of expression noise and disease processes. Trends in

Biotechnology.

27. De S, Teichmann SA, Babu MM (2009) The impact of genomic neighborhood

on the evolution of human and chimpanzee transcriptome. Genome Res 19:

785–794.

28. De S, Babu MM (2010) Genomic neighbourhood and the regulation of gene

expression. Curr Opin Cell Biol 22: 326–333.
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influences transcription elongation: TATA-box element mediates the assembly

of processive transcription complexes responsive to cyclin-dependent kinase 9.
J Biol Chem 283: 7368–7378.

55. Kamine J, Subramanian T, Chinnadurai G (1991) Sp1-dependent activation of

a synthetic promoter by human immunodeficiency virus type 1 Tat protein. Proc
Natl Acad Sci USA 88: 8510–8514.

56. Yedavalli VS, Benkirane M, Jeang KT (2003) Tat and trans-activation-
responsive (TAR) RNA-independent induction of HIV-1 long terminal repeat by

human and murine cyclin T1 requires Sp1. J Biol Chem 278: 6404–6410.
57. Bonneau KR, Ng S, Foster H, Choi KB, Berkhout B, et al. (2008) Derivation of

infectious HIV-1 molecular clones with LTR mutations: sensitivity to the CD8+
cell noncytotoxic anti-HIV response. Virology 373: 30–38.

58. Harrich D, Garcia J, Wu F, Mitsuyasu R, Gonazalez J, et al. (1989) Role of SP1-

binding domains in in vivo transcriptional regulation of the human
immunodeficiency virus type 1 long terminal repeat. J Virol 63: 2585–2591.

59. Das AT, Harwig A, Berkhout B (2011) The HIV-1 Tat Protein Has a Versatile

Role in Activating Viral Transcription. Journal of Virology 85: 9506–9516.
60. Olsen HS, Rosen CA (1992) Contribution of the TATA motif to Tat-mediated

transcriptional activation of human immunodeficiency virus gene expression.
Journal of Virology 66: 5594–5597.

61. van Opijnen T, Kamoschinski J, Jeeninga RE, Berkhout B (2004) The human
immunodeficiency virus type 1 promoter contains a CATA box instead of a

TATA box for optimal transcription and replication. Journal of Virology 78:

6883–6890.
62. Yean D, Gralla J (1997) Transcription reinitiation rate: a special role for the

TATA box. Mol Cell Biol 17: 3809–3816.
63. Yean D, Gralla JD (1999) Transcription reinitiation rate: a potential role for

TATA box stabilization of the TFIID:TFIIA:DNA complex. Nucleic Acids Res

27: 831–838.
64. Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, et al. (1990) HIV-1 entry

into quiescent primary lymphocytes: molecular analysis reveals a labile, latent
viral structure. Cell 61: 213–222.

65. Zhou Y, Zhang H, Siliciano JD, Siliciano RF (2005) Kinetics of human

immunodeficiency virus type 1 decay following entry into resting CD4+ T cells.
J Virol 79: 2199–2210.

66. Nonnemacher MR, Irish BP, Liu Y, Mauger D, Wigdahl B (2004) Specific
sequence configurations of HIV-1 LTR G/C box array result in altered

recruitment of Sp isoforms and correlate with disease progression.
J Neuroimmunol 157: 39–47.

67. Yukl S, Pillai S, Li P, Chang K, Pasutti W, et al. (2009) Latently-infected CD4+
T cells are enriched for HIV-1 Tat variants with impaired transactivation
activity. Virology 387: 98–108.

68. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, et al. (1998) A third-
generation lentivirus vector with a conditional packaging system. J Virol 72:

8463–8471.

69. Efron B, Tibshirani R (1993) An introduction to the bootstrap. New York:
Chapman & Hall. xvi, 436 p.

70. Gardiner CW (2009) Stochastic methods : a handbook for the natural and social
sciences. Berlin: Springer. xvii, 447 p.

Genetic Selection for Stochastic Phenotypes

PLOS Computational Biology | www.ploscompbiol.org 15 July 2013 | Volume 9 | Issue 7 | e1003135


