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Glossary

Adeno-associated virus (AAV): A 4.7 kilobase DNA virus that can be converted

into a vector capable of mediating high efficiency gene delivery to postmitotic

cells, such as neurons, resulting in highly sustained gene expression. AAV

delivery of genes encoding secreted factors is one effective approach to

modulate adult neural stem cell function.

Adult stem cells: An undifferentiated population of cells that retain the ability to

proliferate throughout postnatal life and to differentiate into specialized cells to

replace those that die or are lost.

Astrocytes: A major cell type of the human nervous system. Although they

have been traditionally viewed as cells that only support neurons, recently they

have increasingly been found to be involved in modulation of neural signaling

through bi-directional communication with neurons.

Dentate gyrus (DG): One region of the hippocampus that harbors active adult

neural stem cells.

Hippocampus: A region of the brain involved in processing and transferring

information into memory. It is severely affected by Alzheimer’s disease.

Neurogenesis: The generation of novel neurons.

Oligodendrocytes: These cells ensheath neurons with myelin, an insulating

material that enhances the speed of neuronal signaling (i.e. action potential

conduction along a neuron).
Tissue engineering approaches for expanding, differenti-

ating and engrafting embryonic or adult stem cells have

significant potential for tissue repair but harnessing endo-

genous stem cell populations offers numerous advan-

tages over these approaches. There has been rapid basic

biological progress in the identification of stemcell niches

throughout the body and the molecular factors that

regulate their function. These niches represent novel

therapeutic targets and efforts to use them involve the

familiar challenges of delivering molecular medicines

in vivo. Here we review recent progress in the use of

genes, proteins and small molecules for in situ stem cell

control andmanipulation,with a focusonusing stemcells

of the central nervous system for neuroregeneration.

Endogenous stem cells: the goal of control

Stem cell research has escalated significantly in recent
years, with a focus on increased understanding of natural
roles of stem cells in cell and developmental biology as
well as their potential use for biomedical applications.
Embryonic stem (ES) cells have significant potential for
tissue regeneration, and readers are referred to recent
reviews in this area [1,2]. In addition, tissue engineering
approaches involving the ex vivo expansion, controlled
differentiation (potentially with an appropriate scaffold)
and engraftment of either embryonic or adult stem cells
(see Glossary) also have significant potential and have
recently been discussed [1,3]. However, this review focuses
instead on a worthy long-term goal of the stem cell
biotechnology field: a regenerative medicine approach for
tissue repair focused on the direct manipulation of endo-
genous adult stem cell pools, which have been found to
exist in numerous tissues. Furthermore, although several
studies from other tissues will be discussed, we focus on
examples from the nervous system that have implications
for numerous devastating neurodegenerative disorders.

Direct adult stem cell manipulation offers several
advantages. First, harnessing endogenous stem cells
circumvents the immunocompatibility issues that accom-
pany the use of embryonic stem cells and allogenic adult
stem cells [4]. Second, in situ manipulation involves the
use of molecular medicines that are more established or
‘conventional’, including small molecule, protein and
(potentially) gene therapies. Finally, these medicines
are potentially more economically feasible than ex vivo
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approaches. Although it is clearly more challenging to
gain the control over a stem cell’s environment to precisely
manipulate its function in vivo, there has been significant
progress in reprogramming endogenous pools, to study both
their basic function as well as their therapeutic potential.

Neurodegenerative disorders and adult neural stem cells

Several neurodegenerative disorders have enormous
personal and economic costs but have limited treatment
options, in part because they often involve severe deple-
tion of neurons by the time the condition is diagnosed. For
example, in Parkinson’s disease, which results in severe
declines in motor function and afflictsO1million people in
the U.S.A. alone, 80% of striatal dopaminergic neurons
are lost by the time clinical symptoms are apparent [5].
In addition, amyotrophic lateral sclerosis (Lou Gehrig’s
disease) affects 2–3 of every 100 000 people and it pro-
gressively kills upper and lower motor neurons of the
spinal cord and brain resulting in death typically within
5 years [6]. Furthermore, in advanced Alzheimer’s disease
up to 80% of cholinergic inputs into some regions, such as
the temporal lobes of the brain, can be lost [7]. Therefore,
for these and other disorders, cell-replacement therapies
should be explored for halting or even reversing disease
progression.

Over the past decade it has become increasingly clear
that the adult central nervous system harbors numerous
neural stem cell niches – findings that contradicted
Review TRENDS in Biotechnology Vol.23 No.2 February 2005
Subventricular zone (SVZ): A second region of the adult CNS that harbors

neural stem cells active in the adult.
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traditional views that neurons are irreplaceable. Two
regions of the brain, the dentate gyrus (DG) region of the
hippocampus and the subventricular zone (SVZ) of the
forebrain, contain active stem cells that continually divide
and generate large numbers of new neurons (i.e. adult
neurogenesis) daily throughout human life as reviewed in
[8–13]. In vivo and in vitro studies show that these stem
cells can differentiate into neurons, astrocytes and oligo-
dendrocytes (Figure 1), the three major cell lineages of the
central nervous system (CNS). Moreover, new neurons can
functionally integrate into these regions [14,15] raising
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Figure 1. (a) Adult neural stem cells can differentiate into neurons and glia

(astrocytes and oligodendrocytes), the three major lineages of the adult nervous

system. The instructive signals that have been shown to exert direct effects on adult

neural stem cells and that are discussed in this review are shown. These include

epidermal growth factor (EGF), fibroblast growth factor (FGF-2), insulin-like growth

factor (IGF-I) and bone morphogenetic proteins (BMP). (b) There are three

molecular medicines the delivery of which can induce signaling to modulate and

control stem cell proliferation and differentiation in situ: small molecules, proteins,

and genes.
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the possibility that new cells could functionally repair
tissue in a disease model [16]. Furthermore, although
active neurogenesis appears to be limited to these two
regions, the adult CNS contains quiescent stem cell pools
(including within the spinal cord [17,18], substantia nigra
[19], optic nerve [20] and hypothalamus [21]) that can be
isolated and expanded in culture. Several studies indicate
that adult hippocampal and SVZ neurogenesis appears
to be involved in aspects of learning and memory, as
reviewed in [9,22]; however, the functions of quiescent
pools are not understood. Some results indicate these stem
cells in the cortex might be involved in regeneration from
injury [23–25] although cortical neurogenesis is an area
of debate [26,27].

Basic efforts will continue to yield a deeper under-
standing of the basic biological importance and regulatory
mechanisms of these cells. Regardless of the normal roles
they have in the adult CNS, neural stem cell niches are
highly promising resources that can potentially be har-
nessed to regenerate tissue. To do so, approaches must be
developed to control the proliferation, differentiation and
functional integration of these cells, and the quantitative
analysis of stem cell function might aid in the design of
control strategies for therapeutic applications [28,29]. In
addition, disorders arising from inherited genetic muta-
tions will presumably affect differentiated cells that arise
from endogenous adult stem cells, requiring the genetic
correction or protection of the new cells. Although the
stem cell targets of such therapeutic approaches might be
novel, the therapies will probably involve the familiar
molecular therapeutics of the drug development and
biotechnology fields: genes, proteins and small molecules
(Table 1). Therefore, the traditional challenges of deve-
lopment and delivery, including efforts to translate results
from animal models to human subjects, will still apply.

Gene therapy approaches

Alhough gene therapy has not yet reached the status of a
standard clinical approach, gene delivery studies have
provided compelling evidence that adult neurogenesis is
controlled andmodulated by exogenous signals – although
this work had the primary goal of identifying new signals
that regulate stem cell function. We recently demon-
strated that the factor Sonic Hedgehog (Shh), well known
for its crucial role in neural development, regulates the
proliferation of stem cells in the hippocampus [30]. Speci-
fically, adeno-associated viral (AAV) vector delivery of
cDNA encoding Shh to the adult rat brain tripled the
number of proliferating cells, which later yielded a three-
fold higher number of mature neurons. Although stem cell
proliferation was stimulated, we relied upon endogenous
signals of the neurogenic hippocampus to regulate their
differentiation into neurons, and future work might
involve more actively inducing this fate. In addition, in
the undamaged brain, the survival of immature and
differentiated cells is probably tightly regulated, another
factor that might require control for tissue regeneration.
This work has therapeutic relevance because the hippo-
campus is a region severely afflicted byAlzheimer’s disease.
A subsequent study showed that adeno-associated viral
vector delivery of cDNA encoding insulin-like growth
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Table 1. Comparison of different modes of delivery for stem cell therapy

Gene therapy Proteins Small molecules

Advantages Ability to directly reprogram stem

cells in situ through integration

and expression of certain genes.

Direct and transient delivery of the

therapeutic protein to the stem cell

population.

More control over the course of

administration.

High-throughput screening easily

applied to identify groups of synthetic

small molecules capable of

modulating stem cell behavior as

desired.

Can bemade to be highly specialized for

targeting.

High purity achieved through synthetic

chemistry.

Many small molecules are capable of

passing through the blood–brain

barrier.

Disadvantages Highly dependent on development

of safe and efficient delivery

vectors that can also cross the

blood–brain barrier.

Precise control of gene

expression might be a challenge.

Blood–brain barrier might prevent

systemic administration of certain

proteins, which might require more

invasive techniques.

Even if systemic administration is

possible, there might be adverse

side effects in other parts of the body

Adverse side effects of systemic

delivery apply again.
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factor (IGF-I) to the hippocampus led to a three-fold
increase in the number of oligodendrocytes [31]. The
finding that IGF-I promotes the differentiation of hippo-
campal stem cells into oligodendrocytes is relevant to
demyelinating disorders such as multiple sclerosis.

In a study of the other neurogenic region of the brain,
the SVZ, it was found that bone morphogenetic proteins
(BMPs) promoted the astrocytic differentiation of neural
stem cells [32,33]. Consequently, adenoviral vector deliv-
ery of the BMP antagonist Noggin supported the neuronal
differentiation of SVZ stem cells implanted into the stri-
atum [34], a region severely affected by Parkinson’s disease.
However, in rodents endogenous SVZ stem cells ordinarily
differentiate and migrate to supply new neurons to a
somewhat distant region, the olfactory bulb. In a recent
important study, Goldman and colleagues used adenoviral
vector overexpression of Noggin and brain-derived neuro-
trophic factor (BDNF) to simultaneously suppress astro-
cytic differentiation and promote neuronal differentiation
of endogenous SVZ stem cells. They thereby recruited
them to develop into neurons in the striatum, an other-
wise non-neurogenic region of the brain [35].

Together, these studies show that gene delivery can
efficiently reprogram neural stem cells in situ. However,
clinical development of a gene therapy approach will
depend on challenges in the development of safer and
higher efficiency vectors being overcome [36] as well as
analysis and validation that the results of these animal
studies apply to human neural stem cells because species-
specific differences might exist. In addition, for gene deliv-
ery vehicles such as AAV that provide long-term gene
expression, it might be necessary to implement small
molecule gene regulation systems to control expression.
Furthermore, each of these studies involved direct injec-
tion of vector into the brain, but the development of
‘smart’ gene delivery vehicles capable of passing through
the blood–brain barrier will make combining gene and
neural stem cell therapy approaches even more feasible in
the future [37].
www.sciencedirect.com
Protein delivery

Because of delivery challenges and pharmacokinetic
considerations, the use of proteins to control stem and
progenitor cell function in vivo might sound difficult, if
it had not already been standard clinical practice for
15 years. Erythropoietin (Epo), granulocyte colony stimu-
lating factor (GCSF), granulocyte-macrophage colony
stimulating factor (GM-CSF), and other factors have
been extensively used to modulate hematopoietic progeni-
tor differentiation in the clinical treatment of cancer and
anemia [38]. Although this practice does establish an
important precedent, protein delivery to tissues other
than blood poses additional challenges, particularly for
the CNS in which the blood–brain barrier poses a
formidable hurdle. However, there are several situations
in which systemic growth factor injection can modulate
neurogenesis in the brain. Long term peripheral infusion
of insulin-like growth factor I (IGF-I) led to a O40%
increase in the number of proliferating cells and O70%
increase the number of newborn neurons in the adult rat
hippocampus [39]. In light of more recent work indicating
that direct delivery of IGF-I to the hippocampus induced
oligodendrocytic differentiation [31], however, it is not
clear whether the effects that peripherally infused IGF-I
exerts on hippocampal stem cells are direct or indirect. In
another study in which peripheral protein delivery modu-
lated CNS stem cell function, intraperitoneal injection of
erythropoietin – previously mentioned for its modulation
of hematopoietic progenitor function [38] – nearly doubled
cell proliferation and neuronal differentiation in the SVZ
[40]. In parallel, Epo significantly improved functional
recovery in a middle cerebral artery occlusion stroke
model. Together, these studies indicate that systemic
protein delivery can modulate CNS stem cell function.

In addition, there are several studies in which con-
trolled, local protein delivery systems were used to modu-
late CNS function. Osmotic pump infusion of fibroblast
growth factor-2 (FGF-2) and epidermal growth factor
(EGF) to the lateral ventricles significantly increased cell
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proliferation in the SVZ but had minimal effects in the DG
of the hippocampus [41]. By contrast, Nakatomi et al.
found that osmotic pump infusion of FGF-2 and EGF into
the lateral ventricles following an ischemic injury induced
4.2- and 9.2-fold increases in the levels of newborn
neurons in the CA1 region of the hippocampus, a region
where neurogenesis does not normally occur [42]. The
newly generated neurons functionally integrated into the
neural circuitry and animals treated with the growth
factors after injury exhibited considerable functional
recovery. The fact that normally dormant populations of
stem cells can be stimulated to proliferate and produce
functional neurons after injury, potentially through
synergy with endogenously released factors, has import-
ant implications for the treatment of numerous neurode-
generative diseases. Finally, polymeric controlled release
systems have been developed for protein delivery in the
CNS [43,44]. In one study, polymeric microparticles
carrying nerve growth factor (NGF) enhanced the survival
and potentially the differentiation of fetal rat brain tissue
co-injected with the particles, a result with potential
implications for the treatment of Alzheimer’s disease [43].
Such controlled release approaches could be extended to
manipulate endogenous stem cell populations with pro-
tein factors that cannot exert their effects, or have side
effects, when injected systemically.

Small molecules

Small molecules have been a staple of the drug develop-
ment field and modern approaches of combinatorial
chemistry and high-throughput screening have recently
been applied to the problem of stem cell control. This
promising work has shown that in vitro, and in some cases
in vivo, small molecules have the potential to control
numerous aspects of adult stem cell function, including
proliferation, differentiation and functional integration.
Using gene delivery we demonstrated that activation of
the Sonic Hedgehog signaling pathway promoted adult
neural stem cell proliferation [30]. Several small molecule
agonists of this signaling pathway have recently been
generated and tested for bioactivity in numerous assays
in vitro [45,46] and a recent study employed these agonists
to demonstrate that Shh signaling promotes the expansion
of telencephalic neural progenitor cells in the postnatal
brain [47]. Inaddition, several smallmoleculeantagonists of
this pathway have also been identified, including both
natural and synthetic molecules [45,48–50], which might
have important implications for treatment of cancers
caused by various oncogenic mutations in this signaling
pathway. However, gene delivery or other local drug-
delivery systems might be necessary to avoid side effects
likely to be inherent in systemic delivery of such small
molecules in general [51].

Several other compounds have been shown to promote
adult neural stem cell proliferation in vivo. Lithium, a
standard treatment for mood disorders, was shown to
modestly promote hippocampal stem cell proliferation
in vivo [52], and subsequent work indicates that it might
actually bias the expanded cells towards neuronal differ-
entiation [53]. In addition to lithium, valproate, another
mood-stabilizing drug, has also been shown to increase
www.sciencedirect.com
levels of neuroprotective bcl-2 in the frontal cortex [54]
and stimulate the extracellular signal-regulated kinase
(ERK) pathway in the rat hippocampus and frontal cortex
[55], which is believed to be important for neuronal
survival, regeneration, differentiation and structural and
functional plasticity. This link between mood-stabilizing
compounds and adult neurogenesis suggests a link
between neurogenesis and depression [9]. Finally, chronic
(14 days) administration of rolipram, an inhibitor of
phosphodiesterase type IV (PDE4) that elevates cAMP
levels, resulted in a 37% increase in neurogenesis in the
dentate DG of the hippocampus of adult mice. These
rolipram-induced cells appeared similar to older cells in
their morphology, location and differentiation character-
istics [56], suggesting that the activation of the cAMP-
CREB signaling cascade can be used to increase the
available pool of stem cell population in the adult brain.

Small molecule modulators of differentiation have also
been identified. Schultz and colleagues have also used a
‘chemical genetics’ approach in generating and screening
large libraries of compounds (O50 000) for agents that
modulate stem cell function [57–60]. They first identified
molecules that induced osteogenic differentiation of
mesenchymal stem cells [58]. In subsequent work, they
applied this approach to ES cells and identified com-
pounds that induced the neuronal differentiation of
embryonic carcinoma cells and cardiac myocyte differen-
tiation of murine ES cells [57,59]. Not only can this
approach lead to the identification of signaling pathways
involved in stem cell differentiation, but these compounds
also have application for in vitro tissue engineering
approaches. In addition, future animal studies will reveal
whether the work can be extended to in situ stem cell
regulation in adults.

Finally, combined therapeutic approaches involving
small molecules might promote the functional integration
of neurons. It is known that myelin in the spinal cord has
numerous elements that inhibit the regrowth of neuronal
axons after injury and these inhibitors would have to be
overcome for stem cells to successfully and functionally
repopulate this region. Lu et al. combined cAMP treament,
previously shown to enhance axonal sprouting after a
lesion [61,62], with neurotrophin-3 protein therapy and
engraftment of bone marrow stromal support cells, to
significantly promote axonal regrowth after spinal cord
injury [63]. This work showed that lesioned neuronsmight
be induced to regenerate, and one long-term goal could be
to investigate whether such approaches can be further
developed and applied to spinal cord stem cells [17,18] to
promote the generation and functional integration of new
neurons for treatment of amyotrophic lateral sclerosis or
spinal injury. These studies show that small molecules
have made significant and recent strides in the stem cell
control fields, and additional animal studies will indicate
whether local delivery systems might be necessary.

Conclusion

The endogenous regenerative capacity of many tissues,
particularly the CNS, is limited and new approaches must
be developed to enhance these efforts. Embryonic stem cell
and stem cell-based tissue engineering research are efforts
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that are worthwhile pursuing. However, the stem cell
niches that are present in adults are natural ‘gifts’ that
offer potential for tissue regeneration if we can learn how
to control them. These cellular targets, many of which
have emerged in the past several years, are highly novel;
however, the molecular medicines that must be developed
to exploit them will fall into traditional categories. There-
fore, as challenges in the gene, protein and small molecule
therapeutics fields are progressively overcome, their
capabilities can be merged with increasing knowledge in
the adult stem cell field to develop therapies for diseases
that currently have few options, particularly neurodegen-
erative diseases.
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